Metamath Proof Explorer


Theorem tmsbas

Description: The base set of a constructed metric space. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypothesis tmsbas.k K=toMetSpD
Assertion tmsbas D∞MetXX=BaseK

Proof

Step Hyp Ref Expression
1 tmsbas.k K=toMetSpD
2 eqid BasendxXdistndxD=BasendxXdistndxD
3 2 1 tmslem D∞MetXX=BaseKD=distKMetOpenD=TopOpenK
4 3 simp1d D∞MetXX=BaseK