Metamath Proof Explorer


Definition df-tms

Description: Define the function mapping a metric to the metric space which it defines. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Assertion df-tms toMetSp=dran∞MetBasendxdomdomddistndxdsSetTopSetndxMetOpend

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctms classtoMetSp
1 vd setvard
2 cxmet class∞Met
3 2 crn classran∞Met
4 3 cuni classran∞Met
5 cbs classBase
6 cnx classndx
7 6 5 cfv classBasendx
8 1 cv setvard
9 8 cdm classdomd
10 9 cdm classdomdomd
11 7 10 cop classBasendxdomdomd
12 cds classdist
13 6 12 cfv classdistndx
14 13 8 cop classdistndxd
15 11 14 cpr classBasendxdomdomddistndxd
16 csts classsSet
17 cts classTopSet
18 6 17 cfv classTopSetndx
19 cmopn classMetOpen
20 8 19 cfv classMetOpend
21 18 20 cop classTopSetndxMetOpend
22 15 21 16 co classBasendxdomdomddistndxdsSetTopSetndxMetOpend
23 1 4 22 cmpt classdran∞MetBasendxdomdomddistndxdsSetTopSetndxMetOpend
24 0 23 wceq wfftoMetSp=dran∞MetBasendxdomdomddistndxdsSetTopSetndxMetOpend