Step |
Hyp |
Ref |
Expression |
1 |
|
tmsval.m |
β’ π = { β¨ ( Base β ndx ) , π β© , β¨ ( dist β ndx ) , π· β© } |
2 |
|
tmsval.k |
β’ πΎ = ( toMetSp β π· ) |
3 |
|
elfvdm |
β’ ( π· β ( βMet β π ) β π β dom βMet ) |
4 |
|
basendxltdsndx |
β’ ( Base β ndx ) < ( dist β ndx ) |
5 |
|
dsndxnn |
β’ ( dist β ndx ) β β |
6 |
1 4 5
|
2strbas1 |
β’ ( π β dom βMet β π = ( Base β π ) ) |
7 |
3 6
|
syl |
β’ ( π· β ( βMet β π ) β π = ( Base β π ) ) |
8 |
|
xmetf |
β’ ( π· β ( βMet β π ) β π· : ( π Γ π ) βΆ β* ) |
9 |
|
ffn |
β’ ( π· : ( π Γ π ) βΆ β* β π· Fn ( π Γ π ) ) |
10 |
|
fnresdm |
β’ ( π· Fn ( π Γ π ) β ( π· βΎ ( π Γ π ) ) = π· ) |
11 |
8 9 10
|
3syl |
β’ ( π· β ( βMet β π ) β ( π· βΎ ( π Γ π ) ) = π· ) |
12 |
|
dsid |
β’ dist = Slot ( dist β ndx ) |
13 |
1 4 5 12
|
2strop1 |
β’ ( π· β ( βMet β π ) β π· = ( dist β π ) ) |
14 |
13
|
reseq1d |
β’ ( π· β ( βMet β π ) β ( π· βΎ ( π Γ π ) ) = ( ( dist β π ) βΎ ( π Γ π ) ) ) |
15 |
11 14
|
eqtr3d |
β’ ( π· β ( βMet β π ) β π· = ( ( dist β π ) βΎ ( π Γ π ) ) ) |
16 |
1 2
|
tmsval |
β’ ( π· β ( βMet β π ) β πΎ = ( π sSet β¨ ( TopSet β ndx ) , ( MetOpen β π· ) β© ) ) |
17 |
7 15 16
|
setsmsbas |
β’ ( π· β ( βMet β π ) β π = ( Base β πΎ ) ) |
18 |
7 15 16
|
setsmsds |
β’ ( π· β ( βMet β π ) β ( dist β π ) = ( dist β πΎ ) ) |
19 |
13 18
|
eqtrd |
β’ ( π· β ( βMet β π ) β π· = ( dist β πΎ ) ) |
20 |
|
prex |
β’ { β¨ ( Base β ndx ) , π β© , β¨ ( dist β ndx ) , π· β© } β V |
21 |
1 20
|
eqeltri |
β’ π β V |
22 |
21
|
a1i |
β’ ( π· β ( βMet β π ) β π β V ) |
23 |
7 15 16 22
|
setsmstopn |
β’ ( π· β ( βMet β π ) β ( MetOpen β π· ) = ( TopOpen β πΎ ) ) |
24 |
17 19 23
|
3jca |
β’ ( π· β ( βMet β π ) β ( π = ( Base β πΎ ) β§ π· = ( dist β πΎ ) β§ ( MetOpen β π· ) = ( TopOpen β πΎ ) ) ) |