Step |
Hyp |
Ref |
Expression |
1 |
|
tmsval.m |
β’ π = { β¨ ( Base β ndx ) , π β© , β¨ ( dist β ndx ) , π· β© } |
2 |
|
tmsval.k |
β’ πΎ = ( toMetSp β π· ) |
3 |
|
df-tms |
β’ toMetSp = ( π β βͺ ran βMet β¦ ( { β¨ ( Base β ndx ) , dom dom π β© , β¨ ( dist β ndx ) , π β© } sSet β¨ ( TopSet β ndx ) , ( MetOpen β π ) β© ) ) |
4 |
|
dmeq |
β’ ( π = π· β dom π = dom π· ) |
5 |
4
|
dmeqd |
β’ ( π = π· β dom dom π = dom dom π· ) |
6 |
|
xmetf |
β’ ( π· β ( βMet β π ) β π· : ( π Γ π ) βΆ β* ) |
7 |
6
|
fdmd |
β’ ( π· β ( βMet β π ) β dom π· = ( π Γ π ) ) |
8 |
7
|
dmeqd |
β’ ( π· β ( βMet β π ) β dom dom π· = dom ( π Γ π ) ) |
9 |
|
dmxpid |
β’ dom ( π Γ π ) = π |
10 |
8 9
|
eqtrdi |
β’ ( π· β ( βMet β π ) β dom dom π· = π ) |
11 |
5 10
|
sylan9eqr |
β’ ( ( π· β ( βMet β π ) β§ π = π· ) β dom dom π = π ) |
12 |
11
|
opeq2d |
β’ ( ( π· β ( βMet β π ) β§ π = π· ) β β¨ ( Base β ndx ) , dom dom π β© = β¨ ( Base β ndx ) , π β© ) |
13 |
|
simpr |
β’ ( ( π· β ( βMet β π ) β§ π = π· ) β π = π· ) |
14 |
13
|
opeq2d |
β’ ( ( π· β ( βMet β π ) β§ π = π· ) β β¨ ( dist β ndx ) , π β© = β¨ ( dist β ndx ) , π· β© ) |
15 |
12 14
|
preq12d |
β’ ( ( π· β ( βMet β π ) β§ π = π· ) β { β¨ ( Base β ndx ) , dom dom π β© , β¨ ( dist β ndx ) , π β© } = { β¨ ( Base β ndx ) , π β© , β¨ ( dist β ndx ) , π· β© } ) |
16 |
15 1
|
eqtr4di |
β’ ( ( π· β ( βMet β π ) β§ π = π· ) β { β¨ ( Base β ndx ) , dom dom π β© , β¨ ( dist β ndx ) , π β© } = π ) |
17 |
13
|
fveq2d |
β’ ( ( π· β ( βMet β π ) β§ π = π· ) β ( MetOpen β π ) = ( MetOpen β π· ) ) |
18 |
17
|
opeq2d |
β’ ( ( π· β ( βMet β π ) β§ π = π· ) β β¨ ( TopSet β ndx ) , ( MetOpen β π ) β© = β¨ ( TopSet β ndx ) , ( MetOpen β π· ) β© ) |
19 |
16 18
|
oveq12d |
β’ ( ( π· β ( βMet β π ) β§ π = π· ) β ( { β¨ ( Base β ndx ) , dom dom π β© , β¨ ( dist β ndx ) , π β© } sSet β¨ ( TopSet β ndx ) , ( MetOpen β π ) β© ) = ( π sSet β¨ ( TopSet β ndx ) , ( MetOpen β π· ) β© ) ) |
20 |
|
fvssunirn |
β’ ( βMet β π ) β βͺ ran βMet |
21 |
20
|
sseli |
β’ ( π· β ( βMet β π ) β π· β βͺ ran βMet ) |
22 |
|
ovexd |
β’ ( π· β ( βMet β π ) β ( π sSet β¨ ( TopSet β ndx ) , ( MetOpen β π· ) β© ) β V ) |
23 |
3 19 21 22
|
fvmptd2 |
β’ ( π· β ( βMet β π ) β ( toMetSp β π· ) = ( π sSet β¨ ( TopSet β ndx ) , ( MetOpen β π· ) β© ) ) |
24 |
2 23
|
eqtrid |
β’ ( π· β ( βMet β π ) β πΎ = ( π sSet β¨ ( TopSet β ndx ) , ( MetOpen β π· ) β© ) ) |