Metamath Proof Explorer


Theorem tmsval

Description: For any metric there is an associated metric space. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses tmsval.m ⊒ 𝑀 = { ⟨ ( Base β€˜ ndx ) , 𝑋 ⟩ , ⟨ ( dist β€˜ ndx ) , 𝐷 ⟩ }
tmsval.k ⊒ 𝐾 = ( toMetSp β€˜ 𝐷 )
Assertion tmsval ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) β†’ 𝐾 = ( 𝑀 sSet ⟨ ( TopSet β€˜ ndx ) , ( MetOpen β€˜ 𝐷 ) ⟩ ) )

Proof

Step Hyp Ref Expression
1 tmsval.m ⊒ 𝑀 = { ⟨ ( Base β€˜ ndx ) , 𝑋 ⟩ , ⟨ ( dist β€˜ ndx ) , 𝐷 ⟩ }
2 tmsval.k ⊒ 𝐾 = ( toMetSp β€˜ 𝐷 )
3 df-tms ⊒ toMetSp = ( 𝑑 ∈ βˆͺ ran ∞Met ↦ ( { ⟨ ( Base β€˜ ndx ) , dom dom 𝑑 ⟩ , ⟨ ( dist β€˜ ndx ) , 𝑑 ⟩ } sSet ⟨ ( TopSet β€˜ ndx ) , ( MetOpen β€˜ 𝑑 ) ⟩ ) )
4 dmeq ⊒ ( 𝑑 = 𝐷 β†’ dom 𝑑 = dom 𝐷 )
5 4 dmeqd ⊒ ( 𝑑 = 𝐷 β†’ dom dom 𝑑 = dom dom 𝐷 )
6 xmetf ⊒ ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) β†’ 𝐷 : ( 𝑋 Γ— 𝑋 ) ⟢ ℝ* )
7 6 fdmd ⊒ ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) β†’ dom 𝐷 = ( 𝑋 Γ— 𝑋 ) )
8 7 dmeqd ⊒ ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) β†’ dom dom 𝐷 = dom ( 𝑋 Γ— 𝑋 ) )
9 dmxpid ⊒ dom ( 𝑋 Γ— 𝑋 ) = 𝑋
10 8 9 eqtrdi ⊒ ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) β†’ dom dom 𝐷 = 𝑋 )
11 5 10 sylan9eqr ⊒ ( ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) ∧ 𝑑 = 𝐷 ) β†’ dom dom 𝑑 = 𝑋 )
12 11 opeq2d ⊒ ( ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) ∧ 𝑑 = 𝐷 ) β†’ ⟨ ( Base β€˜ ndx ) , dom dom 𝑑 ⟩ = ⟨ ( Base β€˜ ndx ) , 𝑋 ⟩ )
13 simpr ⊒ ( ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) ∧ 𝑑 = 𝐷 ) β†’ 𝑑 = 𝐷 )
14 13 opeq2d ⊒ ( ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) ∧ 𝑑 = 𝐷 ) β†’ ⟨ ( dist β€˜ ndx ) , 𝑑 ⟩ = ⟨ ( dist β€˜ ndx ) , 𝐷 ⟩ )
15 12 14 preq12d ⊒ ( ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) ∧ 𝑑 = 𝐷 ) β†’ { ⟨ ( Base β€˜ ndx ) , dom dom 𝑑 ⟩ , ⟨ ( dist β€˜ ndx ) , 𝑑 ⟩ } = { ⟨ ( Base β€˜ ndx ) , 𝑋 ⟩ , ⟨ ( dist β€˜ ndx ) , 𝐷 ⟩ } )
16 15 1 eqtr4di ⊒ ( ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) ∧ 𝑑 = 𝐷 ) β†’ { ⟨ ( Base β€˜ ndx ) , dom dom 𝑑 ⟩ , ⟨ ( dist β€˜ ndx ) , 𝑑 ⟩ } = 𝑀 )
17 13 fveq2d ⊒ ( ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) ∧ 𝑑 = 𝐷 ) β†’ ( MetOpen β€˜ 𝑑 ) = ( MetOpen β€˜ 𝐷 ) )
18 17 opeq2d ⊒ ( ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) ∧ 𝑑 = 𝐷 ) β†’ ⟨ ( TopSet β€˜ ndx ) , ( MetOpen β€˜ 𝑑 ) ⟩ = ⟨ ( TopSet β€˜ ndx ) , ( MetOpen β€˜ 𝐷 ) ⟩ )
19 16 18 oveq12d ⊒ ( ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) ∧ 𝑑 = 𝐷 ) β†’ ( { ⟨ ( Base β€˜ ndx ) , dom dom 𝑑 ⟩ , ⟨ ( dist β€˜ ndx ) , 𝑑 ⟩ } sSet ⟨ ( TopSet β€˜ ndx ) , ( MetOpen β€˜ 𝑑 ) ⟩ ) = ( 𝑀 sSet ⟨ ( TopSet β€˜ ndx ) , ( MetOpen β€˜ 𝐷 ) ⟩ ) )
20 fvssunirn ⊒ ( ∞Met β€˜ 𝑋 ) βŠ† βˆͺ ran ∞Met
21 20 sseli ⊒ ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) β†’ 𝐷 ∈ βˆͺ ran ∞Met )
22 ovexd ⊒ ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) β†’ ( 𝑀 sSet ⟨ ( TopSet β€˜ ndx ) , ( MetOpen β€˜ 𝐷 ) ⟩ ) ∈ V )
23 3 19 21 22 fvmptd2 ⊒ ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) β†’ ( toMetSp β€˜ 𝐷 ) = ( 𝑀 sSet ⟨ ( TopSet β€˜ ndx ) , ( MetOpen β€˜ 𝐷 ) ⟩ ) )
24 2 23 eqtrid ⊒ ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) β†’ 𝐾 = ( 𝑀 sSet ⟨ ( TopSet β€˜ ndx ) , ( MetOpen β€˜ 𝐷 ) ⟩ ) )