Metamath Proof Explorer


Theorem tmsval

Description: For any metric there is an associated metric space. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses tmsval.m M=BasendxXdistndxD
tmsval.k K=toMetSpD
Assertion tmsval D∞MetXK=MsSetTopSetndxMetOpenD

Proof

Step Hyp Ref Expression
1 tmsval.m M=BasendxXdistndxD
2 tmsval.k K=toMetSpD
3 df-tms toMetSp=dran∞MetBasendxdomdomddistndxdsSetTopSetndxMetOpend
4 dmeq d=Ddomd=domD
5 4 dmeqd d=Ddomdomd=domdomD
6 xmetf D∞MetXD:X×X*
7 6 fdmd D∞MetXdomD=X×X
8 7 dmeqd D∞MetXdomdomD=domX×X
9 dmxpid domX×X=X
10 8 9 eqtrdi D∞MetXdomdomD=X
11 5 10 sylan9eqr D∞MetXd=Ddomdomd=X
12 11 opeq2d D∞MetXd=DBasendxdomdomd=BasendxX
13 simpr D∞MetXd=Dd=D
14 13 opeq2d D∞MetXd=Ddistndxd=distndxD
15 12 14 preq12d D∞MetXd=DBasendxdomdomddistndxd=BasendxXdistndxD
16 15 1 eqtr4di D∞MetXd=DBasendxdomdomddistndxd=M
17 13 fveq2d D∞MetXd=DMetOpend=MetOpenD
18 17 opeq2d D∞MetXd=DTopSetndxMetOpend=TopSetndxMetOpenD
19 16 18 oveq12d D∞MetXd=DBasendxdomdomddistndxdsSetTopSetndxMetOpend=MsSetTopSetndxMetOpenD
20 fvssunirn ∞MetXran∞Met
21 20 sseli D∞MetXDran∞Met
22 ovexd D∞MetXMsSetTopSetndxMetOpenDV
23 3 19 21 22 fvmptd2 D∞MetXtoMetSpD=MsSetTopSetndxMetOpenD
24 2 23 eqtrid D∞MetXK=MsSetTopSetndxMetOpenD