Step |
Hyp |
Ref |
Expression |
1 |
|
tmsval.m |
β’ π = { β¨ ( Base β ndx ) , π β© , β¨ ( dist β ndx ) , π· β© } |
2 |
|
tmsval.k |
β’ πΎ = ( toMetSp β π· ) |
3 |
|
elfvdm |
β’ ( π· β ( βMet β π ) β π β dom βMet ) |
4 |
|
df-ds |
β’ dist = Slot ; 1 2 |
5 |
|
1nn |
β’ 1 β β |
6 |
|
2nn0 |
β’ 2 β β0 |
7 |
|
1nn0 |
β’ 1 β β0 |
8 |
|
1lt10 |
β’ 1 < ; 1 0 |
9 |
5 6 7 8
|
declti |
β’ 1 < ; 1 2 |
10 |
|
2nn |
β’ 2 β β |
11 |
7 10
|
decnncl |
β’ ; 1 2 β β |
12 |
1 4 9 11
|
2strbas |
β’ ( π β dom βMet β π = ( Base β π ) ) |
13 |
3 12
|
syl |
β’ ( π· β ( βMet β π ) β π = ( Base β π ) ) |
14 |
|
xmetf |
β’ ( π· β ( βMet β π ) β π· : ( π Γ π ) βΆ β* ) |
15 |
|
ffn |
β’ ( π· : ( π Γ π ) βΆ β* β π· Fn ( π Γ π ) ) |
16 |
|
fnresdm |
β’ ( π· Fn ( π Γ π ) β ( π· βΎ ( π Γ π ) ) = π· ) |
17 |
14 15 16
|
3syl |
β’ ( π· β ( βMet β π ) β ( π· βΎ ( π Γ π ) ) = π· ) |
18 |
1 4 9 11
|
2strop |
β’ ( π· β ( βMet β π ) β π· = ( dist β π ) ) |
19 |
18
|
reseq1d |
β’ ( π· β ( βMet β π ) β ( π· βΎ ( π Γ π ) ) = ( ( dist β π ) βΎ ( π Γ π ) ) ) |
20 |
17 19
|
eqtr3d |
β’ ( π· β ( βMet β π ) β π· = ( ( dist β π ) βΎ ( π Γ π ) ) ) |
21 |
1 2
|
tmsval |
β’ ( π· β ( βMet β π ) β πΎ = ( π sSet β¨ ( TopSet β ndx ) , ( MetOpen β π· ) β© ) ) |
22 |
13 20 21
|
setsmsbas |
β’ ( π· β ( βMet β π ) β π = ( Base β πΎ ) ) |
23 |
13 20 21
|
setsmsds |
β’ ( π· β ( βMet β π ) β ( dist β π ) = ( dist β πΎ ) ) |
24 |
18 23
|
eqtrd |
β’ ( π· β ( βMet β π ) β π· = ( dist β πΎ ) ) |
25 |
|
prex |
β’ { β¨ ( Base β ndx ) , π β© , β¨ ( dist β ndx ) , π· β© } β V |
26 |
1 25
|
eqeltri |
β’ π β V |
27 |
26
|
a1i |
β’ ( π· β ( βMet β π ) β π β V ) |
28 |
13 20 21 27
|
setsmstopn |
β’ ( π· β ( βMet β π ) β ( MetOpen β π· ) = ( TopOpen β πΎ ) ) |
29 |
22 24 28
|
3jca |
β’ ( π· β ( βMet β π ) β ( π = ( Base β πΎ ) β§ π· = ( dist β πΎ ) β§ ( MetOpen β π· ) = ( TopOpen β πΎ ) ) ) |