Description: Least upper bounds in a topology are realized by unions. (Contributed by Zhi Wang, 30-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | topclat.i | ⊢ 𝐼 = ( toInc ‘ 𝐽 ) | |
| toplatlub.j | ⊢ ( 𝜑 → 𝐽 ∈ Top ) | ||
| toplatlub.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐽 ) | ||
| toplatlub.u | ⊢ 𝑈 = ( lub ‘ 𝐼 ) | ||
| Assertion | toplatlub | ⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) = ∪ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topclat.i | ⊢ 𝐼 = ( toInc ‘ 𝐽 ) | |
| 2 | toplatlub.j | ⊢ ( 𝜑 → 𝐽 ∈ Top ) | |
| 3 | toplatlub.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐽 ) | |
| 4 | toplatlub.u | ⊢ 𝑈 = ( lub ‘ 𝐼 ) | |
| 5 | 4 | a1i | ⊢ ( 𝜑 → 𝑈 = ( lub ‘ 𝐼 ) ) |
| 6 | uniopn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝐽 ) → ∪ 𝑆 ∈ 𝐽 ) | |
| 7 | 2 3 6 | syl2anc | ⊢ ( 𝜑 → ∪ 𝑆 ∈ 𝐽 ) |
| 8 | intmin | ⊢ ( ∪ 𝑆 ∈ 𝐽 → ∩ { 𝑥 ∈ 𝐽 ∣ ∪ 𝑆 ⊆ 𝑥 } = ∪ 𝑆 ) | |
| 9 | 8 | eqcomd | ⊢ ( ∪ 𝑆 ∈ 𝐽 → ∪ 𝑆 = ∩ { 𝑥 ∈ 𝐽 ∣ ∪ 𝑆 ⊆ 𝑥 } ) |
| 10 | 7 9 | syl | ⊢ ( 𝜑 → ∪ 𝑆 = ∩ { 𝑥 ∈ 𝐽 ∣ ∪ 𝑆 ⊆ 𝑥 } ) |
| 11 | 1 2 3 5 10 7 | ipolub | ⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) = ∪ 𝑆 ) |