| Step |
Hyp |
Ref |
Expression |
| 1 |
|
topclat.i |
⊢ 𝐼 = ( toInc ‘ 𝐽 ) |
| 2 |
|
toplatlub.j |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 3 |
|
toplatlub.s |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐽 ) |
| 4 |
|
toplatglb.g |
⊢ 𝐺 = ( glb ‘ 𝐼 ) |
| 5 |
|
toplatglb.e |
⊢ ( 𝜑 → 𝑆 ≠ ∅ ) |
| 6 |
4
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( glb ‘ 𝐼 ) ) |
| 7 |
|
intssuni |
⊢ ( 𝑆 ≠ ∅ → ∩ 𝑆 ⊆ ∪ 𝑆 ) |
| 8 |
5 7
|
syl |
⊢ ( 𝜑 → ∩ 𝑆 ⊆ ∪ 𝑆 ) |
| 9 |
3
|
unissd |
⊢ ( 𝜑 → ∪ 𝑆 ⊆ ∪ 𝐽 ) |
| 10 |
8 9
|
sstrd |
⊢ ( 𝜑 → ∩ 𝑆 ⊆ ∪ 𝐽 ) |
| 11 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 12 |
11
|
ntrval |
⊢ ( ( 𝐽 ∈ Top ∧ ∩ 𝑆 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ ∩ 𝑆 ) = ∪ ( 𝐽 ∩ 𝒫 ∩ 𝑆 ) ) |
| 13 |
2 10 12
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ ∩ 𝑆 ) = ∪ ( 𝐽 ∩ 𝒫 ∩ 𝑆 ) ) |
| 14 |
2
|
uniexd |
⊢ ( 𝜑 → ∪ 𝐽 ∈ V ) |
| 15 |
14 10
|
ssexd |
⊢ ( 𝜑 → ∩ 𝑆 ∈ V ) |
| 16 |
|
inpw |
⊢ ( ∩ 𝑆 ∈ V → ( 𝐽 ∩ 𝒫 ∩ 𝑆 ) = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ∩ 𝑆 } ) |
| 17 |
16
|
unieqd |
⊢ ( ∩ 𝑆 ∈ V → ∪ ( 𝐽 ∩ 𝒫 ∩ 𝑆 ) = ∪ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ∩ 𝑆 } ) |
| 18 |
15 17
|
syl |
⊢ ( 𝜑 → ∪ ( 𝐽 ∩ 𝒫 ∩ 𝑆 ) = ∪ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ∩ 𝑆 } ) |
| 19 |
13 18
|
eqtrd |
⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ ∩ 𝑆 ) = ∪ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ∩ 𝑆 } ) |
| 20 |
11
|
ntropn |
⊢ ( ( 𝐽 ∈ Top ∧ ∩ 𝑆 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ ∩ 𝑆 ) ∈ 𝐽 ) |
| 21 |
2 10 20
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ ∩ 𝑆 ) ∈ 𝐽 ) |
| 22 |
1 2 3 6 19 21
|
ipoglb |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑆 ) = ( ( int ‘ 𝐽 ) ‘ ∩ 𝑆 ) ) |