Description: Two ways of expressing a collection of subsets as seen in df-ntr , unimax , and others (Contributed by Zhi Wang, 27-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | inpw | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∩ 𝒫 𝐵 ) = { 𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝐵 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfin5 | ⊢ ( 𝐴 ∩ 𝒫 𝐵 ) = { 𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝒫 𝐵 } | |
2 | elpw2g | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵 ) ) | |
3 | 2 | rabbidv | ⊢ ( 𝐵 ∈ 𝑉 → { 𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝒫 𝐵 } = { 𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝐵 } ) |
4 | 1 3 | eqtrid | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∩ 𝒫 𝐵 ) = { 𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝐵 } ) |