Metamath Proof Explorer


Theorem toplly

Description: A topology is locally a topology. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion toplly Locally Top = Top

Proof

Step Hyp Ref Expression
1 llytop ( 𝑗 ∈ Locally Top → 𝑗 ∈ Top )
2 1 ssriv Locally Top ⊆ Top
3 resttop ( ( 𝑗 ∈ Top ∧ 𝑥𝑗 ) → ( 𝑗t 𝑥 ) ∈ Top )
4 3 adantl ( ( ⊤ ∧ ( 𝑗 ∈ Top ∧ 𝑥𝑗 ) ) → ( 𝑗t 𝑥 ) ∈ Top )
5 ssidd ( ⊤ → Top ⊆ Top )
6 4 5 restlly ( ⊤ → Top ⊆ Locally Top )
7 6 mptru Top ⊆ Locally Top
8 2 7 eqssi Locally Top = Top