Database
BASIC TOPOLOGY
Topology
Local topological properties
toplly
Next ⟩
topnlly
Metamath Proof Explorer
Ascii
Unicode
Theorem
toplly
Description:
A topology is locally a topology.
(Contributed by
Mario Carneiro
, 2-Mar-2015)
Ref
Expression
Assertion
toplly
⊢
Locally
Top
=
Top
Proof
Step
Hyp
Ref
Expression
1
llytop
⊢
j
∈
Locally
Top
→
j
∈
Top
2
1
ssriv
⊢
Locally
Top
⊆
Top
3
resttop
⊢
j
∈
Top
∧
x
∈
j
→
j
↾
𝑡
x
∈
Top
4
3
adantl
⊢
⊤
∧
j
∈
Top
∧
x
∈
j
→
j
↾
𝑡
x
∈
Top
5
ssidd
⊢
⊤
→
Top
⊆
Top
6
4
5
restlly
⊢
⊤
→
Top
⊆
Locally
Top
7
6
mptru
⊢
Top
⊆
Locally
Top
8
2
7
eqssi
⊢
Locally
Top
=
Top