Metamath Proof Explorer


Theorem restlly

Description: If the property A passes to open subspaces, then a space which is A is also locally A . (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Hypotheses restlly.1 φ j A x j j 𝑡 x A
restlly.2 φ A Top
Assertion restlly φ A Locally A

Proof

Step Hyp Ref Expression
1 restlly.1 φ j A x j j 𝑡 x A
2 restlly.2 φ A Top
3 2 sselda φ j A j Top
4 simprl φ j A x j y x x j
5 vex x V
6 5 pwid x 𝒫 x
7 6 a1i φ j A x j y x x 𝒫 x
8 4 7 elind φ j A x j y x x j 𝒫 x
9 simprr φ j A x j y x y x
10 1 anassrs φ j A x j j 𝑡 x A
11 10 adantrr φ j A x j y x j 𝑡 x A
12 elequ2 u = x y u y x
13 oveq2 u = x j 𝑡 u = j 𝑡 x
14 13 eleq1d u = x j 𝑡 u A j 𝑡 x A
15 12 14 anbi12d u = x y u j 𝑡 u A y x j 𝑡 x A
16 15 rspcev x j 𝒫 x y x j 𝑡 x A u j 𝒫 x y u j 𝑡 u A
17 8 9 11 16 syl12anc φ j A x j y x u j 𝒫 x y u j 𝑡 u A
18 17 ralrimivva φ j A x j y x u j 𝒫 x y u j 𝑡 u A
19 islly j Locally A j Top x j y x u j 𝒫 x y u j 𝑡 u A
20 3 18 19 sylanbrc φ j A j Locally A
21 20 ex φ j A j Locally A
22 21 ssrdv φ A Locally A