Metamath Proof Explorer
Description: A subset is open in the topology it generates via restriction.
(Contributed by Glauco Siliprandi, 21-Dec-2024)
|
|
Ref |
Expression |
|
Hypotheses |
toprestsubel.1 |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
|
|
toprestsubel.2 |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝐽 ) |
|
Assertion |
toprestsubel |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐽 ↾t 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
toprestsubel.1 |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
2 |
|
toprestsubel.2 |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝐽 ) |
3 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
4 |
3
|
topopn |
⊢ ( 𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽 ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → ∪ 𝐽 ∈ 𝐽 ) |
6 |
1 5 2
|
restsubel |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐽 ↾t 𝐴 ) ) |