Metamath Proof Explorer


Theorem toprestsubel

Description: A subset is open in the topology it generates via restriction. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Hypotheses toprestsubel.1 ( 𝜑𝐽 ∈ Top )
toprestsubel.2 ( 𝜑𝐴 𝐽 )
Assertion toprestsubel ( 𝜑𝐴 ∈ ( 𝐽t 𝐴 ) )

Proof

Step Hyp Ref Expression
1 toprestsubel.1 ( 𝜑𝐽 ∈ Top )
2 toprestsubel.2 ( 𝜑𝐴 𝐽 )
3 eqid 𝐽 = 𝐽
4 3 topopn ( 𝐽 ∈ Top → 𝐽𝐽 )
5 1 4 syl ( 𝜑 𝐽𝐽 )
6 1 5 2 restsubel ( 𝜑𝐴 ∈ ( 𝐽t 𝐴 ) )