Description: A subset is open in the topology it generates via restriction. (Contributed by Glauco Siliprandi, 21-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | toprestsubel.1 | |- ( ph -> J e. Top ) |
|
toprestsubel.2 | |- ( ph -> A C_ U. J ) |
||
Assertion | toprestsubel | |- ( ph -> A e. ( J |`t A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toprestsubel.1 | |- ( ph -> J e. Top ) |
|
2 | toprestsubel.2 | |- ( ph -> A C_ U. J ) |
|
3 | eqid | |- U. J = U. J |
|
4 | 3 | topopn | |- ( J e. Top -> U. J e. J ) |
5 | 1 4 | syl | |- ( ph -> U. J e. J ) |
6 | 1 5 2 | restsubel | |- ( ph -> A e. ( J |`t A ) ) |