Description: A subset is open in the topology it generates via restriction. (Contributed by Glauco Siliprandi, 21-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | toprestsubel.1 | |- ( ph -> J e. Top ) |
|
| toprestsubel.2 | |- ( ph -> A C_ U. J ) |
||
| Assertion | toprestsubel | |- ( ph -> A e. ( J |`t A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toprestsubel.1 | |- ( ph -> J e. Top ) |
|
| 2 | toprestsubel.2 | |- ( ph -> A C_ U. J ) |
|
| 3 | eqid | |- U. J = U. J |
|
| 4 | 3 | topopn | |- ( J e. Top -> U. J e. J ) |
| 5 | 1 4 | syl | |- ( ph -> U. J e. J ) |
| 6 | 1 5 2 | restsubel | |- ( ph -> A e. ( J |`t A ) ) |