Metamath Proof Explorer


Theorem toprestsubel

Description: A subset is open in the topology it generates via restriction. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Hypotheses toprestsubel.1
|- ( ph -> J e. Top )
toprestsubel.2
|- ( ph -> A C_ U. J )
Assertion toprestsubel
|- ( ph -> A e. ( J |`t A ) )

Proof

Step Hyp Ref Expression
1 toprestsubel.1
 |-  ( ph -> J e. Top )
2 toprestsubel.2
 |-  ( ph -> A C_ U. J )
3 eqid
 |-  U. J = U. J
4 3 topopn
 |-  ( J e. Top -> U. J e. J )
5 1 4 syl
 |-  ( ph -> U. J e. J )
6 1 5 2 restsubel
 |-  ( ph -> A e. ( J |`t A ) )