Metamath Proof Explorer


Theorem rabidd

Description: An "identity" law of concretion for restricted abstraction. Special case of Definition 2.1 of Quine p. 16. (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses rabidd.1
|- ( ph -> x e. A )
rabidd.2
|- ( ph -> ch )
Assertion rabidd
|- ( ph -> x e. { x e. A | ch } )

Proof

Step Hyp Ref Expression
1 rabidd.1
 |-  ( ph -> x e. A )
2 rabidd.2
 |-  ( ph -> ch )
3 rabid
 |-  ( x e. { x e. A | ch } <-> ( x e. A /\ ch ) )
4 1 2 3 sylanbrc
 |-  ( ph -> x e. { x e. A | ch } )