Metamath Proof Explorer


Theorem rabidd

Description: An "identity" law of concretion for restricted abstraction. Special case of Definition 2.1 of Quine p. 16. (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses rabidd.1 φxA
rabidd.2 φχ
Assertion rabidd φxxA|χ

Proof

Step Hyp Ref Expression
1 rabidd.1 φxA
2 rabidd.2 φχ
3 rabid xxA|χxAχ
4 1 2 3 sylanbrc φxxA|χ