Metamath Proof Explorer


Theorem restsubel

Description: A subset belongs in the space it generates via restriction. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Hypotheses restsubel.1 ( 𝜑𝐽𝑉 )
restsubel.2 ( 𝜑 𝐽𝐽 )
restsubel.3 ( 𝜑𝐴 𝐽 )
Assertion restsubel ( 𝜑𝐴 ∈ ( 𝐽t 𝐴 ) )

Proof

Step Hyp Ref Expression
1 restsubel.1 ( 𝜑𝐽𝑉 )
2 restsubel.2 ( 𝜑 𝐽𝐽 )
3 restsubel.3 ( 𝜑𝐴 𝐽 )
4 ineq1 ( 𝑥 = 𝐽 → ( 𝑥𝐴 ) = ( 𝐽𝐴 ) )
5 4 eqeq2d ( 𝑥 = 𝐽 → ( 𝐴 = ( 𝑥𝐴 ) ↔ 𝐴 = ( 𝐽𝐴 ) ) )
6 5 adantl ( ( 𝜑𝑥 = 𝐽 ) → ( 𝐴 = ( 𝑥𝐴 ) ↔ 𝐴 = ( 𝐽𝐴 ) ) )
7 incom ( 𝐽𝐴 ) = ( 𝐴 𝐽 )
8 7 a1i ( 𝜑 → ( 𝐽𝐴 ) = ( 𝐴 𝐽 ) )
9 df-ss ( 𝐴 𝐽 ↔ ( 𝐴 𝐽 ) = 𝐴 )
10 3 9 sylib ( 𝜑 → ( 𝐴 𝐽 ) = 𝐴 )
11 8 10 eqtrd ( 𝜑 → ( 𝐽𝐴 ) = 𝐴 )
12 11 eqcomd ( 𝜑𝐴 = ( 𝐽𝐴 ) )
13 2 6 12 rspcedvd ( 𝜑 → ∃ 𝑥𝐽 𝐴 = ( 𝑥𝐴 ) )
14 2 3 ssexd ( 𝜑𝐴 ∈ V )
15 elrest ( ( 𝐽𝑉𝐴 ∈ V ) → ( 𝐴 ∈ ( 𝐽t 𝐴 ) ↔ ∃ 𝑥𝐽 𝐴 = ( 𝑥𝐴 ) ) )
16 1 14 15 syl2anc ( 𝜑 → ( 𝐴 ∈ ( 𝐽t 𝐴 ) ↔ ∃ 𝑥𝐽 𝐴 = ( 𝑥𝐴 ) ) )
17 13 16 mpbird ( 𝜑𝐴 ∈ ( 𝐽t 𝐴 ) )