| Step |
Hyp |
Ref |
Expression |
| 1 |
|
restsubel.1 |
⊢ ( 𝜑 → 𝐽 ∈ 𝑉 ) |
| 2 |
|
restsubel.2 |
⊢ ( 𝜑 → ∪ 𝐽 ∈ 𝐽 ) |
| 3 |
|
restsubel.3 |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝐽 ) |
| 4 |
|
ineq1 |
⊢ ( 𝑥 = ∪ 𝐽 → ( 𝑥 ∩ 𝐴 ) = ( ∪ 𝐽 ∩ 𝐴 ) ) |
| 5 |
4
|
eqeq2d |
⊢ ( 𝑥 = ∪ 𝐽 → ( 𝐴 = ( 𝑥 ∩ 𝐴 ) ↔ 𝐴 = ( ∪ 𝐽 ∩ 𝐴 ) ) ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = ∪ 𝐽 ) → ( 𝐴 = ( 𝑥 ∩ 𝐴 ) ↔ 𝐴 = ( ∪ 𝐽 ∩ 𝐴 ) ) ) |
| 7 |
|
incom |
⊢ ( ∪ 𝐽 ∩ 𝐴 ) = ( 𝐴 ∩ ∪ 𝐽 ) |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → ( ∪ 𝐽 ∩ 𝐴 ) = ( 𝐴 ∩ ∪ 𝐽 ) ) |
| 9 |
|
dfss2 |
⊢ ( 𝐴 ⊆ ∪ 𝐽 ↔ ( 𝐴 ∩ ∪ 𝐽 ) = 𝐴 ) |
| 10 |
3 9
|
sylib |
⊢ ( 𝜑 → ( 𝐴 ∩ ∪ 𝐽 ) = 𝐴 ) |
| 11 |
8 10
|
eqtrd |
⊢ ( 𝜑 → ( ∪ 𝐽 ∩ 𝐴 ) = 𝐴 ) |
| 12 |
11
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = ( ∪ 𝐽 ∩ 𝐴 ) ) |
| 13 |
2 6 12
|
rspcedvd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐽 𝐴 = ( 𝑥 ∩ 𝐴 ) ) |
| 14 |
2 3
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 15 |
|
elrest |
⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ V ) → ( 𝐴 ∈ ( 𝐽 ↾t 𝐴 ) ↔ ∃ 𝑥 ∈ 𝐽 𝐴 = ( 𝑥 ∩ 𝐴 ) ) ) |
| 16 |
1 14 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐽 ↾t 𝐴 ) ↔ ∃ 𝑥 ∈ 𝐽 𝐴 = ( 𝑥 ∩ 𝐴 ) ) ) |
| 17 |
13 16
|
mpbird |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐽 ↾t 𝐴 ) ) |