Metamath Proof Explorer


Theorem tposco

Description: Transposition of a composition. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion tposco tpos ( 𝐹𝐺 ) = ( 𝐹 ∘ tpos 𝐺 )

Proof

Step Hyp Ref Expression
1 coass ( ( 𝐹𝐺 ) ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ { 𝑥 } ) ) = ( 𝐹 ∘ ( 𝐺 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ { 𝑥 } ) ) )
2 dftpos4 tpos ( 𝐹𝐺 ) = ( ( 𝐹𝐺 ) ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ { 𝑥 } ) )
3 dftpos4 tpos 𝐺 = ( 𝐺 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ { 𝑥 } ) )
4 3 coeq2i ( 𝐹 ∘ tpos 𝐺 ) = ( 𝐹 ∘ ( 𝐺 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ { 𝑥 } ) ) )
5 1 2 4 3eqtr4i tpos ( 𝐹𝐺 ) = ( 𝐹 ∘ tpos 𝐺 )