| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-tpos |
⊢ tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) |
| 2 |
|
relcnv |
⊢ Rel ◡ dom 𝐹 |
| 3 |
|
df-rel |
⊢ ( Rel ◡ dom 𝐹 ↔ ◡ dom 𝐹 ⊆ ( V × V ) ) |
| 4 |
2 3
|
mpbi |
⊢ ◡ dom 𝐹 ⊆ ( V × V ) |
| 5 |
|
unss1 |
⊢ ( ◡ dom 𝐹 ⊆ ( V × V ) → ( ◡ dom 𝐹 ∪ { ∅ } ) ⊆ ( ( V × V ) ∪ { ∅ } ) ) |
| 6 |
|
resmpt |
⊢ ( ( ◡ dom 𝐹 ∪ { ∅ } ) ⊆ ( ( V × V ) ∪ { ∅ } ) → ( ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ↾ ( ◡ dom 𝐹 ∪ { ∅ } ) ) = ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) |
| 7 |
4 5 6
|
mp2b |
⊢ ( ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ↾ ( ◡ dom 𝐹 ∪ { ∅ } ) ) = ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) |
| 8 |
|
resss |
⊢ ( ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ↾ ( ◡ dom 𝐹 ∪ { ∅ } ) ) ⊆ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) |
| 9 |
7 8
|
eqsstrri |
⊢ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ⊆ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) |
| 10 |
|
coss2 |
⊢ ( ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ⊆ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) → ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ⊆ ( 𝐹 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ) |
| 11 |
9 10
|
ax-mp |
⊢ ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ⊆ ( 𝐹 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) |
| 12 |
1 11
|
eqsstri |
⊢ tpos 𝐹 ⊆ ( 𝐹 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) |
| 13 |
|
relco |
⊢ Rel ( 𝐹 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) |
| 14 |
|
vex |
⊢ 𝑦 ∈ V |
| 15 |
|
vex |
⊢ 𝑧 ∈ V |
| 16 |
14 15
|
opelco |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( 𝐹 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ↔ ∃ 𝑤 ( 𝑦 ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) 𝑤 ∧ 𝑤 𝐹 𝑧 ) ) |
| 17 |
|
vex |
⊢ 𝑤 ∈ V |
| 18 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↔ 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ) ) |
| 19 |
|
sneq |
⊢ ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } ) |
| 20 |
19
|
cnveqd |
⊢ ( 𝑥 = 𝑦 → ◡ { 𝑥 } = ◡ { 𝑦 } ) |
| 21 |
20
|
unieqd |
⊢ ( 𝑥 = 𝑦 → ∪ ◡ { 𝑥 } = ∪ ◡ { 𝑦 } ) |
| 22 |
21
|
eqeq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑧 = ∪ ◡ { 𝑥 } ↔ 𝑧 = ∪ ◡ { 𝑦 } ) ) |
| 23 |
18 22
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑧 = ∪ ◡ { 𝑥 } ) ↔ ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑧 = ∪ ◡ { 𝑦 } ) ) ) |
| 24 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 = ∪ ◡ { 𝑦 } ↔ 𝑤 = ∪ ◡ { 𝑦 } ) ) |
| 25 |
24
|
anbi2d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑧 = ∪ ◡ { 𝑦 } ) ↔ ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑤 = ∪ ◡ { 𝑦 } ) ) ) |
| 26 |
|
df-mpt |
⊢ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) = { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑧 = ∪ ◡ { 𝑥 } ) } |
| 27 |
14 17 23 25 26
|
brab |
⊢ ( 𝑦 ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) 𝑤 ↔ ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑤 = ∪ ◡ { 𝑦 } ) ) |
| 28 |
|
simplr |
⊢ ( ( ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑤 = ∪ ◡ { 𝑦 } ) ∧ 𝑤 𝐹 𝑧 ) → 𝑤 = ∪ ◡ { 𝑦 } ) |
| 29 |
17 15
|
breldm |
⊢ ( 𝑤 𝐹 𝑧 → 𝑤 ∈ dom 𝐹 ) |
| 30 |
29
|
adantl |
⊢ ( ( ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑤 = ∪ ◡ { 𝑦 } ) ∧ 𝑤 𝐹 𝑧 ) → 𝑤 ∈ dom 𝐹 ) |
| 31 |
28 30
|
eqeltrrd |
⊢ ( ( ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑤 = ∪ ◡ { 𝑦 } ) ∧ 𝑤 𝐹 𝑧 ) → ∪ ◡ { 𝑦 } ∈ dom 𝐹 ) |
| 32 |
|
elvv |
⊢ ( 𝑦 ∈ ( V × V ) ↔ ∃ 𝑧 ∃ 𝑤 𝑦 = 〈 𝑧 , 𝑤 〉 ) |
| 33 |
|
opswap |
⊢ ∪ ◡ { 〈 𝑧 , 𝑤 〉 } = 〈 𝑤 , 𝑧 〉 |
| 34 |
33
|
eleq1i |
⊢ ( ∪ ◡ { 〈 𝑧 , 𝑤 〉 } ∈ dom 𝐹 ↔ 〈 𝑤 , 𝑧 〉 ∈ dom 𝐹 ) |
| 35 |
15 17
|
opelcnv |
⊢ ( 〈 𝑧 , 𝑤 〉 ∈ ◡ dom 𝐹 ↔ 〈 𝑤 , 𝑧 〉 ∈ dom 𝐹 ) |
| 36 |
34 35
|
bitr4i |
⊢ ( ∪ ◡ { 〈 𝑧 , 𝑤 〉 } ∈ dom 𝐹 ↔ 〈 𝑧 , 𝑤 〉 ∈ ◡ dom 𝐹 ) |
| 37 |
|
sneq |
⊢ ( 𝑦 = 〈 𝑧 , 𝑤 〉 → { 𝑦 } = { 〈 𝑧 , 𝑤 〉 } ) |
| 38 |
37
|
cnveqd |
⊢ ( 𝑦 = 〈 𝑧 , 𝑤 〉 → ◡ { 𝑦 } = ◡ { 〈 𝑧 , 𝑤 〉 } ) |
| 39 |
38
|
unieqd |
⊢ ( 𝑦 = 〈 𝑧 , 𝑤 〉 → ∪ ◡ { 𝑦 } = ∪ ◡ { 〈 𝑧 , 𝑤 〉 } ) |
| 40 |
39
|
eleq1d |
⊢ ( 𝑦 = 〈 𝑧 , 𝑤 〉 → ( ∪ ◡ { 𝑦 } ∈ dom 𝐹 ↔ ∪ ◡ { 〈 𝑧 , 𝑤 〉 } ∈ dom 𝐹 ) ) |
| 41 |
|
eleq1 |
⊢ ( 𝑦 = 〈 𝑧 , 𝑤 〉 → ( 𝑦 ∈ ◡ dom 𝐹 ↔ 〈 𝑧 , 𝑤 〉 ∈ ◡ dom 𝐹 ) ) |
| 42 |
40 41
|
bibi12d |
⊢ ( 𝑦 = 〈 𝑧 , 𝑤 〉 → ( ( ∪ ◡ { 𝑦 } ∈ dom 𝐹 ↔ 𝑦 ∈ ◡ dom 𝐹 ) ↔ ( ∪ ◡ { 〈 𝑧 , 𝑤 〉 } ∈ dom 𝐹 ↔ 〈 𝑧 , 𝑤 〉 ∈ ◡ dom 𝐹 ) ) ) |
| 43 |
36 42
|
mpbiri |
⊢ ( 𝑦 = 〈 𝑧 , 𝑤 〉 → ( ∪ ◡ { 𝑦 } ∈ dom 𝐹 ↔ 𝑦 ∈ ◡ dom 𝐹 ) ) |
| 44 |
43
|
exlimivv |
⊢ ( ∃ 𝑧 ∃ 𝑤 𝑦 = 〈 𝑧 , 𝑤 〉 → ( ∪ ◡ { 𝑦 } ∈ dom 𝐹 ↔ 𝑦 ∈ ◡ dom 𝐹 ) ) |
| 45 |
32 44
|
sylbi |
⊢ ( 𝑦 ∈ ( V × V ) → ( ∪ ◡ { 𝑦 } ∈ dom 𝐹 ↔ 𝑦 ∈ ◡ dom 𝐹 ) ) |
| 46 |
45
|
biimpcd |
⊢ ( ∪ ◡ { 𝑦 } ∈ dom 𝐹 → ( 𝑦 ∈ ( V × V ) → 𝑦 ∈ ◡ dom 𝐹 ) ) |
| 47 |
|
elun1 |
⊢ ( 𝑦 ∈ ◡ dom 𝐹 → 𝑦 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ) |
| 48 |
46 47
|
syl6 |
⊢ ( ∪ ◡ { 𝑦 } ∈ dom 𝐹 → ( 𝑦 ∈ ( V × V ) → 𝑦 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ) ) |
| 49 |
31 48
|
syl |
⊢ ( ( ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑤 = ∪ ◡ { 𝑦 } ) ∧ 𝑤 𝐹 𝑧 ) → ( 𝑦 ∈ ( V × V ) → 𝑦 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ) ) |
| 50 |
|
elun2 |
⊢ ( 𝑦 ∈ { ∅ } → 𝑦 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ) |
| 51 |
50
|
a1i |
⊢ ( ( ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑤 = ∪ ◡ { 𝑦 } ) ∧ 𝑤 𝐹 𝑧 ) → ( 𝑦 ∈ { ∅ } → 𝑦 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ) ) |
| 52 |
|
simpll |
⊢ ( ( ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑤 = ∪ ◡ { 𝑦 } ) ∧ 𝑤 𝐹 𝑧 ) → 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ) |
| 53 |
|
elun |
⊢ ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ↔ ( 𝑦 ∈ ( V × V ) ∨ 𝑦 ∈ { ∅ } ) ) |
| 54 |
52 53
|
sylib |
⊢ ( ( ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑤 = ∪ ◡ { 𝑦 } ) ∧ 𝑤 𝐹 𝑧 ) → ( 𝑦 ∈ ( V × V ) ∨ 𝑦 ∈ { ∅ } ) ) |
| 55 |
49 51 54
|
mpjaod |
⊢ ( ( ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑤 = ∪ ◡ { 𝑦 } ) ∧ 𝑤 𝐹 𝑧 ) → 𝑦 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ) |
| 56 |
|
simpr |
⊢ ( ( ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑤 = ∪ ◡ { 𝑦 } ) ∧ 𝑤 𝐹 𝑧 ) → 𝑤 𝐹 𝑧 ) |
| 57 |
28 56
|
eqbrtrrd |
⊢ ( ( ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑤 = ∪ ◡ { 𝑦 } ) ∧ 𝑤 𝐹 𝑧 ) → ∪ ◡ { 𝑦 } 𝐹 𝑧 ) |
| 58 |
55 57
|
jca |
⊢ ( ( ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑤 = ∪ ◡ { 𝑦 } ) ∧ 𝑤 𝐹 𝑧 ) → ( 𝑦 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ∧ ∪ ◡ { 𝑦 } 𝐹 𝑧 ) ) |
| 59 |
27 58
|
sylanb |
⊢ ( ( 𝑦 ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) 𝑤 ∧ 𝑤 𝐹 𝑧 ) → ( 𝑦 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ∧ ∪ ◡ { 𝑦 } 𝐹 𝑧 ) ) |
| 60 |
|
brtpos2 |
⊢ ( 𝑧 ∈ V → ( 𝑦 tpos 𝐹 𝑧 ↔ ( 𝑦 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ∧ ∪ ◡ { 𝑦 } 𝐹 𝑧 ) ) ) |
| 61 |
15 60
|
ax-mp |
⊢ ( 𝑦 tpos 𝐹 𝑧 ↔ ( 𝑦 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ∧ ∪ ◡ { 𝑦 } 𝐹 𝑧 ) ) |
| 62 |
59 61
|
sylibr |
⊢ ( ( 𝑦 ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) 𝑤 ∧ 𝑤 𝐹 𝑧 ) → 𝑦 tpos 𝐹 𝑧 ) |
| 63 |
|
df-br |
⊢ ( 𝑦 tpos 𝐹 𝑧 ↔ 〈 𝑦 , 𝑧 〉 ∈ tpos 𝐹 ) |
| 64 |
62 63
|
sylib |
⊢ ( ( 𝑦 ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) 𝑤 ∧ 𝑤 𝐹 𝑧 ) → 〈 𝑦 , 𝑧 〉 ∈ tpos 𝐹 ) |
| 65 |
64
|
exlimiv |
⊢ ( ∃ 𝑤 ( 𝑦 ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) 𝑤 ∧ 𝑤 𝐹 𝑧 ) → 〈 𝑦 , 𝑧 〉 ∈ tpos 𝐹 ) |
| 66 |
16 65
|
sylbi |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( 𝐹 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) → 〈 𝑦 , 𝑧 〉 ∈ tpos 𝐹 ) |
| 67 |
13 66
|
relssi |
⊢ ( 𝐹 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ⊆ tpos 𝐹 |
| 68 |
12 67
|
eqssi |
⊢ tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) |