Metamath Proof Explorer


Theorem dftpos4

Description: Alternate definition of tpos . (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion dftpos4 tposF=FxV×Vx-1

Proof

Step Hyp Ref Expression
1 df-tpos tposF=FxdomF-1x-1
2 relcnv ReldomF-1
3 df-rel ReldomF-1domF-1V×V
4 2 3 mpbi domF-1V×V
5 unss1 domF-1V×VdomF-1V×V
6 resmpt domF-1V×VxV×Vx-1domF-1=xdomF-1x-1
7 4 5 6 mp2b xV×Vx-1domF-1=xdomF-1x-1
8 resss xV×Vx-1domF-1xV×Vx-1
9 7 8 eqsstrri xdomF-1x-1xV×Vx-1
10 coss2 xdomF-1x-1xV×Vx-1FxdomF-1x-1FxV×Vx-1
11 9 10 ax-mp FxdomF-1x-1FxV×Vx-1
12 1 11 eqsstri tposFFxV×Vx-1
13 relco RelFxV×Vx-1
14 vex yV
15 vex zV
16 14 15 opelco yzFxV×Vx-1wyxV×Vx-1wwFz
17 vex wV
18 eleq1 x=yxV×VyV×V
19 sneq x=yx=y
20 19 cnveqd x=yx-1=y-1
21 20 unieqd x=yx-1=y-1
22 21 eqeq2d x=yz=x-1z=y-1
23 18 22 anbi12d x=yxV×Vz=x-1yV×Vz=y-1
24 eqeq1 z=wz=y-1w=y-1
25 24 anbi2d z=wyV×Vz=y-1yV×Vw=y-1
26 df-mpt xV×Vx-1=xz|xV×Vz=x-1
27 14 17 23 25 26 brab yxV×Vx-1wyV×Vw=y-1
28 simplr yV×Vw=y-1wFzw=y-1
29 17 15 breldm wFzwdomF
30 29 adantl yV×Vw=y-1wFzwdomF
31 28 30 eqeltrrd yV×Vw=y-1wFzy-1domF
32 elvv yV×Vzwy=zw
33 opswap zw-1=wz
34 33 eleq1i zw-1domFwzdomF
35 15 17 opelcnv zwdomF-1wzdomF
36 34 35 bitr4i zw-1domFzwdomF-1
37 sneq y=zwy=zw
38 37 cnveqd y=zwy-1=zw-1
39 38 unieqd y=zwy-1=zw-1
40 39 eleq1d y=zwy-1domFzw-1domF
41 eleq1 y=zwydomF-1zwdomF-1
42 40 41 bibi12d y=zwy-1domFydomF-1zw-1domFzwdomF-1
43 36 42 mpbiri y=zwy-1domFydomF-1
44 43 exlimivv zwy=zwy-1domFydomF-1
45 32 44 sylbi yV×Vy-1domFydomF-1
46 45 biimpcd y-1domFyV×VydomF-1
47 elun1 ydomF-1ydomF-1
48 46 47 syl6 y-1domFyV×VydomF-1
49 31 48 syl yV×Vw=y-1wFzyV×VydomF-1
50 elun2 yydomF-1
51 50 a1i yV×Vw=y-1wFzyydomF-1
52 simpll yV×Vw=y-1wFzyV×V
53 elun yV×VyV×Vy
54 52 53 sylib yV×Vw=y-1wFzyV×Vy
55 49 51 54 mpjaod yV×Vw=y-1wFzydomF-1
56 simpr yV×Vw=y-1wFzwFz
57 28 56 eqbrtrrd yV×Vw=y-1wFzy-1Fz
58 55 57 jca yV×Vw=y-1wFzydomF-1y-1Fz
59 27 58 sylanb yxV×Vx-1wwFzydomF-1y-1Fz
60 brtpos2 zVytposFzydomF-1y-1Fz
61 15 60 ax-mp ytposFzydomF-1y-1Fz
62 59 61 sylibr yxV×Vx-1wwFzytposFz
63 df-br ytposFzyztposF
64 62 63 sylib yxV×Vx-1wwFzyztposF
65 64 exlimiv wyxV×Vx-1wwFzyztposF
66 16 65 sylbi yzFxV×Vx-1yztposF
67 13 66 relssi FxV×Vx-1tposF
68 12 67 eqssi tposF=FxV×Vx-1