Metamath Proof Explorer


Theorem brtpos2

Description: Value of the transposition at an ordered pair <. A , B >. . (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion brtpos2 BVAtposFBAdomF-1A-1FB

Proof

Step Hyp Ref Expression
1 reltpos ReltposF
2 1 brrelex1i AtposFBAV
3 2 a1i BVAtposFBAV
4 elex AdomF-1AV
5 4 adantr AdomF-1A-1FBAV
6 5 a1i BVAdomF-1A-1FBAV
7 df-tpos tposF=FxdomF-1x-1
8 7 breqi AtposFBAFxdomF-1x-1B
9 brcog AVBVAFxdomF-1x-1ByAxdomF-1x-1yyFB
10 8 9 bitrid AVBVAtposFByAxdomF-1x-1yyFB
11 funmpt FunxdomF-1x-1
12 funbrfv2b FunxdomF-1x-1AxdomF-1x-1yAdomxdomF-1x-1xdomF-1x-1A=y
13 11 12 ax-mp AxdomF-1x-1yAdomxdomF-1x-1xdomF-1x-1A=y
14 snex xV
15 14 cnvex x-1V
16 15 uniex x-1V
17 eqid xdomF-1x-1=xdomF-1x-1
18 16 17 dmmpti domxdomF-1x-1=domF-1
19 18 eleq2i AdomxdomF-1x-1AdomF-1
20 eqcom xdomF-1x-1A=yy=xdomF-1x-1A
21 19 20 anbi12i AdomxdomF-1x-1xdomF-1x-1A=yAdomF-1y=xdomF-1x-1A
22 sneq x=Ax=A
23 22 cnveqd x=Ax-1=A-1
24 23 unieqd x=Ax-1=A-1
25 snex AV
26 25 cnvex A-1V
27 26 uniex A-1V
28 24 17 27 fvmpt AdomF-1xdomF-1x-1A=A-1
29 28 eqeq2d AdomF-1y=xdomF-1x-1Ay=A-1
30 29 pm5.32i AdomF-1y=xdomF-1x-1AAdomF-1y=A-1
31 21 30 bitri AdomxdomF-1x-1xdomF-1x-1A=yAdomF-1y=A-1
32 13 31 bitri AxdomF-1x-1yAdomF-1y=A-1
33 32 biancomi AxdomF-1x-1yy=A-1AdomF-1
34 33 anbi1i AxdomF-1x-1yyFBy=A-1AdomF-1yFB
35 anass y=A-1AdomF-1yFBy=A-1AdomF-1yFB
36 34 35 bitri AxdomF-1x-1yyFBy=A-1AdomF-1yFB
37 36 exbii yAxdomF-1x-1yyFByy=A-1AdomF-1yFB
38 breq1 y=A-1yFBA-1FB
39 38 anbi2d y=A-1AdomF-1yFBAdomF-1A-1FB
40 27 39 ceqsexv yy=A-1AdomF-1yFBAdomF-1A-1FB
41 37 40 bitri yAxdomF-1x-1yyFBAdomF-1A-1FB
42 10 41 bitrdi AVBVAtposFBAdomF-1A-1FB
43 42 expcom BVAVAtposFBAdomF-1A-1FB
44 3 6 43 pm5.21ndd BVAtposFBAdomF-1A-1FB