Metamath Proof Explorer


Definition df-tpos

Description: Define the transposition of a function, which is a function G = tpos F satisfying G ( x , y ) = F ( y , x ) . (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion df-tpos tposF=FxdomF-1x-1

Detailed syntax breakdown

Step Hyp Ref Expression
0 cF classF
1 0 ctpos classtposF
2 vx setvarx
3 0 cdm classdomF
4 3 ccnv classdomF-1
5 c0 class
6 5 csn class
7 4 6 cun classdomF-1
8 2 cv setvarx
9 8 csn classx
10 9 ccnv classx-1
11 10 cuni classx-1
12 2 7 11 cmpt classxdomF-1x-1
13 0 12 ccom classFxdomF-1x-1
14 1 13 wceq wfftposF=FxdomF-1x-1