Metamath Proof Explorer


Theorem tposss

Description: Subset theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion tposss FGtposFtposG

Proof

Step Hyp Ref Expression
1 coss1 FGFxdomF-1x-1GxdomF-1x-1
2 dmss FGdomFdomG
3 cnvss domFdomGdomF-1domG-1
4 unss1 domF-1domG-1domF-1domG-1
5 resmpt domF-1domG-1xdomG-1x-1domF-1=xdomF-1x-1
6 2 3 4 5 4syl FGxdomG-1x-1domF-1=xdomF-1x-1
7 resss xdomG-1x-1domF-1xdomG-1x-1
8 6 7 eqsstrrdi FGxdomF-1x-1xdomG-1x-1
9 coss2 xdomF-1x-1xdomG-1x-1GxdomF-1x-1GxdomG-1x-1
10 8 9 syl FGGxdomF-1x-1GxdomG-1x-1
11 1 10 sstrd FGFxdomF-1x-1GxdomG-1x-1
12 df-tpos tposF=FxdomF-1x-1
13 df-tpos tposG=GxdomG-1x-1
14 11 12 13 3sstr4g FGtposFtposG