| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coss1 |
⊢ ( 𝐹 ⊆ 𝐺 → ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ⊆ ( 𝐺 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ) |
| 2 |
|
dmss |
⊢ ( 𝐹 ⊆ 𝐺 → dom 𝐹 ⊆ dom 𝐺 ) |
| 3 |
|
cnvss |
⊢ ( dom 𝐹 ⊆ dom 𝐺 → ◡ dom 𝐹 ⊆ ◡ dom 𝐺 ) |
| 4 |
|
unss1 |
⊢ ( ◡ dom 𝐹 ⊆ ◡ dom 𝐺 → ( ◡ dom 𝐹 ∪ { ∅ } ) ⊆ ( ◡ dom 𝐺 ∪ { ∅ } ) ) |
| 5 |
|
resmpt |
⊢ ( ( ◡ dom 𝐹 ∪ { ∅ } ) ⊆ ( ◡ dom 𝐺 ∪ { ∅ } ) → ( ( 𝑥 ∈ ( ◡ dom 𝐺 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ↾ ( ◡ dom 𝐹 ∪ { ∅ } ) ) = ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) |
| 6 |
2 3 4 5
|
4syl |
⊢ ( 𝐹 ⊆ 𝐺 → ( ( 𝑥 ∈ ( ◡ dom 𝐺 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ↾ ( ◡ dom 𝐹 ∪ { ∅ } ) ) = ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) |
| 7 |
|
resss |
⊢ ( ( 𝑥 ∈ ( ◡ dom 𝐺 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ↾ ( ◡ dom 𝐹 ∪ { ∅ } ) ) ⊆ ( 𝑥 ∈ ( ◡ dom 𝐺 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) |
| 8 |
6 7
|
eqsstrrdi |
⊢ ( 𝐹 ⊆ 𝐺 → ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ⊆ ( 𝑥 ∈ ( ◡ dom 𝐺 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) |
| 9 |
|
coss2 |
⊢ ( ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ⊆ ( 𝑥 ∈ ( ◡ dom 𝐺 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) → ( 𝐺 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ⊆ ( 𝐺 ∘ ( 𝑥 ∈ ( ◡ dom 𝐺 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ) |
| 10 |
8 9
|
syl |
⊢ ( 𝐹 ⊆ 𝐺 → ( 𝐺 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ⊆ ( 𝐺 ∘ ( 𝑥 ∈ ( ◡ dom 𝐺 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ) |
| 11 |
1 10
|
sstrd |
⊢ ( 𝐹 ⊆ 𝐺 → ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ⊆ ( 𝐺 ∘ ( 𝑥 ∈ ( ◡ dom 𝐺 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ) |
| 12 |
|
df-tpos |
⊢ tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) |
| 13 |
|
df-tpos |
⊢ tpos 𝐺 = ( 𝐺 ∘ ( 𝑥 ∈ ( ◡ dom 𝐺 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) |
| 14 |
11 12 13
|
3sstr4g |
⊢ ( 𝐹 ⊆ 𝐺 → tpos 𝐹 ⊆ tpos 𝐺 ) |