Description: The transposition of a function is a function. (Contributed by Mario Carneiro, 10-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | tposfun | ⊢ ( Fun 𝐹 → Fun tpos 𝐹 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmpt | ⊢ Fun ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) | |
2 | funco | ⊢ ( ( Fun 𝐹 ∧ Fun ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) → Fun ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ) | |
3 | 1 2 | mpan2 | ⊢ ( Fun 𝐹 → Fun ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ) |
4 | df-tpos | ⊢ tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) | |
5 | 4 | funeqi | ⊢ ( Fun tpos 𝐹 ↔ Fun ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ) |
6 | 3 5 | sylibr | ⊢ ( Fun 𝐹 → Fun tpos 𝐹 ) |