Metamath Proof Explorer


Theorem tposfun

Description: The transposition of a function is a function. (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion tposfun ( Fun 𝐹 → Fun tpos 𝐹 )

Proof

Step Hyp Ref Expression
1 funmpt Fun ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } )
2 funco ( ( Fun 𝐹 ∧ Fun ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) ) → Fun ( 𝐹 ∘ ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) ) )
3 1 2 mpan2 ( Fun 𝐹 → Fun ( 𝐹 ∘ ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) ) )
4 df-tpos tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) )
5 4 funeqi ( Fun tpos 𝐹 ↔ Fun ( 𝐹 ∘ ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) ) )
6 3 5 sylibr ( Fun 𝐹 → Fun tpos 𝐹 )