Step |
Hyp |
Ref |
Expression |
1 |
|
dmtpos |
⊢ ( Rel dom 𝐹 → dom tpos 𝐹 = ◡ dom 𝐹 ) |
2 |
1
|
reseq2d |
⊢ ( Rel dom 𝐹 → ( tpos 𝐹 ↾ dom tpos 𝐹 ) = ( tpos 𝐹 ↾ ◡ dom 𝐹 ) ) |
3 |
|
reltpos |
⊢ Rel tpos 𝐹 |
4 |
|
resdm |
⊢ ( Rel tpos 𝐹 → ( tpos 𝐹 ↾ dom tpos 𝐹 ) = tpos 𝐹 ) |
5 |
3 4
|
ax-mp |
⊢ ( tpos 𝐹 ↾ dom tpos 𝐹 ) = tpos 𝐹 |
6 |
|
df-tpos |
⊢ tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) |
7 |
6
|
reseq1i |
⊢ ( tpos 𝐹 ↾ ◡ dom 𝐹 ) = ( ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ↾ ◡ dom 𝐹 ) |
8 |
|
resco |
⊢ ( ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ↾ ◡ dom 𝐹 ) = ( 𝐹 ∘ ( ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ↾ ◡ dom 𝐹 ) ) |
9 |
|
ssun1 |
⊢ ◡ dom 𝐹 ⊆ ( ◡ dom 𝐹 ∪ { ∅ } ) |
10 |
|
resmpt |
⊢ ( ◡ dom 𝐹 ⊆ ( ◡ dom 𝐹 ∪ { ∅ } ) → ( ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ↾ ◡ dom 𝐹 ) = ( 𝑥 ∈ ◡ dom 𝐹 ↦ ∪ ◡ { 𝑥 } ) ) |
11 |
9 10
|
ax-mp |
⊢ ( ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ↾ ◡ dom 𝐹 ) = ( 𝑥 ∈ ◡ dom 𝐹 ↦ ∪ ◡ { 𝑥 } ) |
12 |
11
|
coeq2i |
⊢ ( 𝐹 ∘ ( ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ↾ ◡ dom 𝐹 ) ) = ( 𝐹 ∘ ( 𝑥 ∈ ◡ dom 𝐹 ↦ ∪ ◡ { 𝑥 } ) ) |
13 |
7 8 12
|
3eqtri |
⊢ ( tpos 𝐹 ↾ ◡ dom 𝐹 ) = ( 𝐹 ∘ ( 𝑥 ∈ ◡ dom 𝐹 ↦ ∪ ◡ { 𝑥 } ) ) |
14 |
2 5 13
|
3eqtr3g |
⊢ ( Rel dom 𝐹 → tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ◡ dom 𝐹 ↦ ∪ ◡ { 𝑥 } ) ) ) |