Metamath Proof Explorer


Theorem dftpos2

Description: Alternate definition of tpos when F has relational domain. (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion dftpos2 ( Rel dom 𝐹 → tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 dom 𝐹 { 𝑥 } ) ) )

Proof

Step Hyp Ref Expression
1 dmtpos ( Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹 )
2 1 reseq2d ( Rel dom 𝐹 → ( tpos 𝐹 ↾ dom tpos 𝐹 ) = ( tpos 𝐹 dom 𝐹 ) )
3 reltpos Rel tpos 𝐹
4 resdm ( Rel tpos 𝐹 → ( tpos 𝐹 ↾ dom tpos 𝐹 ) = tpos 𝐹 )
5 3 4 ax-mp ( tpos 𝐹 ↾ dom tpos 𝐹 ) = tpos 𝐹
6 df-tpos tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) )
7 6 reseq1i ( tpos 𝐹 dom 𝐹 ) = ( ( 𝐹 ∘ ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) ) ↾ dom 𝐹 )
8 resco ( ( 𝐹 ∘ ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) ) ↾ dom 𝐹 ) = ( 𝐹 ∘ ( ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) ↾ dom 𝐹 ) )
9 ssun1 dom 𝐹 ⊆ ( dom 𝐹 ∪ { ∅ } )
10 resmpt ( dom 𝐹 ⊆ ( dom 𝐹 ∪ { ∅ } ) → ( ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) ↾ dom 𝐹 ) = ( 𝑥 dom 𝐹 { 𝑥 } ) )
11 9 10 ax-mp ( ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) ↾ dom 𝐹 ) = ( 𝑥 dom 𝐹 { 𝑥 } )
12 11 coeq2i ( 𝐹 ∘ ( ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) ↾ dom 𝐹 ) ) = ( 𝐹 ∘ ( 𝑥 dom 𝐹 { 𝑥 } ) )
13 7 8 12 3eqtri ( tpos 𝐹 dom 𝐹 ) = ( 𝐹 ∘ ( 𝑥 dom 𝐹 { 𝑥 } ) )
14 2 5 13 3eqtr3g ( Rel dom 𝐹 → tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 dom 𝐹 { 𝑥 } ) ) )