| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trlsegvdeg.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
trlsegvdeg.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 3 |
|
trlsegvdeg.f |
⊢ ( 𝜑 → Fun 𝐼 ) |
| 4 |
|
trlsegvdeg.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 5 |
|
trlsegvdeg.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
| 6 |
|
trlsegvdeg.w |
⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
| 7 |
|
trlsegvdeg.vx |
⊢ ( 𝜑 → ( Vtx ‘ 𝑋 ) = 𝑉 ) |
| 8 |
|
trlsegvdeg.vy |
⊢ ( 𝜑 → ( Vtx ‘ 𝑌 ) = 𝑉 ) |
| 9 |
|
trlsegvdeg.vz |
⊢ ( 𝜑 → ( Vtx ‘ 𝑍 ) = 𝑉 ) |
| 10 |
|
trlsegvdeg.ix |
⊢ ( 𝜑 → ( iEdg ‘ 𝑋 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) |
| 11 |
|
trlsegvdeg.iy |
⊢ ( 𝜑 → ( iEdg ‘ 𝑌 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) |
| 12 |
|
trlsegvdeg.iz |
⊢ ( 𝜑 → ( iEdg ‘ 𝑍 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ... 𝑁 ) ) ) ) |
| 13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
trlsegvdeglem5 |
⊢ ( 𝜑 → dom ( iEdg ‘ 𝑌 ) = { ( 𝐹 ‘ 𝑁 ) } ) |
| 14 |
|
snfi |
⊢ { ( 𝐹 ‘ 𝑁 ) } ∈ Fin |
| 15 |
13 14
|
eqeltrdi |
⊢ ( 𝜑 → dom ( iEdg ‘ 𝑌 ) ∈ Fin ) |