Metamath Proof Explorer


Theorem tz6.26

Description: All nonempty subclasses of a class having a well-ordered set-like relation have minimal elements for that relation. Proposition 6.26 of TakeutiZaring p. 31. (Contributed by Scott Fenton, 29-Jan-2011) (Revised by Mario Carneiro, 26-Jun-2015) (Proof shortened by Scott Fenton, 17-Nov-2024)

Ref Expression
Assertion tz6.26 ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐵𝐴𝐵 ≠ ∅ ) ) → ∃ 𝑦𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ )

Proof

Step Hyp Ref Expression
1 wefr ( 𝑅 We 𝐴𝑅 Fr 𝐴 )
2 1 adantr ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → 𝑅 Fr 𝐴 )
3 weso ( 𝑅 We 𝐴𝑅 Or 𝐴 )
4 sopo ( 𝑅 Or 𝐴𝑅 Po 𝐴 )
5 3 4 syl ( 𝑅 We 𝐴𝑅 Po 𝐴 )
6 5 adantr ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → 𝑅 Po 𝐴 )
7 simpr ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → 𝑅 Se 𝐴 )
8 2 6 7 3jca ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → ( 𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴 ) )
9 frpomin2 ( ( ( 𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐵𝐴𝐵 ≠ ∅ ) ) → ∃ 𝑦𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ )
10 8 9 sylan ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐵𝐴𝐵 ≠ ∅ ) ) → ∃ 𝑦𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ )