Metamath Proof Explorer


Theorem tz6.26

Description: All nonempty subclasses of a class having a well-ordered set-like relation have minimal elements for that relation. Proposition 6.26 of TakeutiZaring p. 31. (Contributed by Scott Fenton, 29-Jan-2011) (Revised by Mario Carneiro, 26-Jun-2015) (Proof shortened by Scott Fenton, 17-Nov-2024)

Ref Expression
Assertion tz6.26 R We A R Se A B A B y B Pred R B y =

Proof

Step Hyp Ref Expression
1 wefr R We A R Fr A
2 1 adantr R We A R Se A R Fr A
3 weso R We A R Or A
4 sopo R Or A R Po A
5 3 4 syl R We A R Po A
6 5 adantr R We A R Se A R Po A
7 simpr R We A R Se A R Se A
8 2 6 7 3jca R We A R Se A R Fr A R Po A R Se A
9 frpomin2 R Fr A R Po A R Se A B A B y B Pred R B y =
10 8 9 sylan R We A R Se A B A B y B Pred R B y =