Metamath Proof Explorer


Theorem frpomin2

Description: Every nonempty (possibly proper) subclass of a class A with a well-founded set-like partial order R has a minimal element. The additional condition of partial order over frmin enables avoiding the axiom of infinity. (Contributed by Scott Fenton, 11-Feb-2022)

Ref Expression
Assertion frpomin2 R Fr A R Po A R Se A B A B x B Pred R B x =

Proof

Step Hyp Ref Expression
1 frpomin R Fr A R Po A R Se A B A B x B y B ¬ y R x
2 vex x V
3 2 dfpred3 Pred R B x = y B | y R x
4 3 eqeq1i Pred R B x = y B | y R x =
5 rabeq0 y B | y R x = y B ¬ y R x
6 4 5 bitri Pred R B x = y B ¬ y R x
7 6 rexbii x B Pred R B x = x B y B ¬ y R x
8 1 7 sylibr R Fr A R Po A R Se A B A B x B Pred R B x =