Metamath Proof Explorer


Theorem frpomin2

Description: Every nonempty (possibly proper) subclass of a class A with a well-founded set-like partial order R has a minimal element. The additional condition of partial order over frmin enables avoiding the axiom of infinity. (Contributed by Scott Fenton, 11-Feb-2022)

Ref Expression
Assertion frpomin2 RFrARPoARSeABABxBPredRBx=

Proof

Step Hyp Ref Expression
1 frpomin RFrARPoARSeABABxByB¬yRx
2 vex xV
3 2 dfpred3 PredRBx=yB|yRx
4 3 eqeq1i PredRBx=yB|yRx=
5 rabeq0 yB|yRx=yB¬yRx
6 4 5 bitri PredRBx=yB¬yRx
7 6 rexbii xBPredRBx=xByB¬yRx
8 1 7 sylibr RFrARPoARSeABABxBPredRBx=