Metamath Proof Explorer


Theorem frmin

Description: Every (possibly proper) subclass of a class A with a well-founded set-like relation R has a minimal element. This is a very strong generalization of tz6.26 and tz7.5 . (Contributed by Scott Fenton, 4-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Assertion frmin R Fr A R Se A B A B y B Pred R B y =

Proof

Step Hyp Ref Expression
1 frss B A R Fr A R Fr B
2 sess2 B A R Se A R Se B
3 1 2 anim12d B A R Fr A R Se A R Fr B R Se B
4 n0 B b b B
5 predeq3 y = b Pred R B y = Pred R B b
6 5 eqeq1d y = b Pred R B y = Pred R B b =
7 6 rspcev b B Pred R B b = y B Pred R B y =
8 7 ex b B Pred R B b = y B Pred R B y =
9 8 adantl R Fr B R Se B b B Pred R B b = y B Pred R B y =
10 setlikespec b B R Se B Pred R B b V
11 trpredpred Pred R B b V Pred R B b TrPred R B b
12 ssn0 Pred R B b TrPred R B b Pred R B b TrPred R B b
13 12 ex Pred R B b TrPred R B b Pred R B b TrPred R B b
14 11 13 syl Pred R B b V Pred R B b TrPred R B b
15 trpredss Pred R B b V TrPred R B b B
16 14 15 jctild Pred R B b V Pred R B b TrPred R B b B TrPred R B b
17 10 16 syl b B R Se B Pred R B b TrPred R B b B TrPred R B b
18 17 adantr b B R Se B R Fr B Pred R B b TrPred R B b B TrPred R B b
19 trpredex TrPred R B b V
20 sseq1 c = TrPred R B b c B TrPred R B b B
21 neeq1 c = TrPred R B b c TrPred R B b
22 20 21 anbi12d c = TrPred R B b c B c TrPred R B b B TrPred R B b
23 predeq2 c = TrPred R B b Pred R c y = Pred R TrPred R B b y
24 23 eqeq1d c = TrPred R B b Pred R c y = Pred R TrPred R B b y =
25 24 rexeqbi1dv c = TrPred R B b y c Pred R c y = y TrPred R B b Pred R TrPred R B b y =
26 22 25 imbi12d c = TrPred R B b c B c y c Pred R c y = TrPred R B b B TrPred R B b y TrPred R B b Pred R TrPred R B b y =
27 26 imbi2d c = TrPred R B b R Fr B c B c y c Pred R c y = R Fr B TrPred R B b B TrPred R B b y TrPred R B b Pred R TrPred R B b y =
28 dffr4 R Fr B c c B c y c Pred R c y =
29 sp c c B c y c Pred R c y = c B c y c Pred R c y =
30 28 29 sylbi R Fr B c B c y c Pred R c y =
31 19 27 30 vtocl R Fr B TrPred R B b B TrPred R B b y TrPred R B b Pred R TrPred R B b y =
32 10 15 syl b B R Se B TrPred R B b B
33 32 adantr b B R Se B y TrPred R B b TrPred R B b B
34 trpredtr b B R Se B y TrPred R B b Pred R B y TrPred R B b
35 34 imp b B R Se B y TrPred R B b Pred R B y TrPred R B b
36 sspred TrPred R B b B Pred R B y TrPred R B b Pred R B y = Pred R TrPred R B b y
37 33 35 36 syl2anc b B R Se B y TrPred R B b Pred R B y = Pred R TrPred R B b y
38 37 eqeq1d b B R Se B y TrPred R B b Pred R B y = Pred R TrPred R B b y =
39 38 biimprd b B R Se B y TrPred R B b Pred R TrPred R B b y = Pred R B y =
40 39 reximdva b B R Se B y TrPred R B b Pred R TrPred R B b y = y TrPred R B b Pred R B y =
41 ssrexv TrPred R B b B y TrPred R B b Pred R B y = y B Pred R B y =
42 32 40 41 sylsyld b B R Se B y TrPred R B b Pred R TrPred R B b y = y B Pred R B y =
43 31 42 sylan9r b B R Se B R Fr B TrPred R B b B TrPred R B b y B Pred R B y =
44 18 43 syld b B R Se B R Fr B Pred R B b y B Pred R B y =
45 44 an31s R Fr B R Se B b B Pred R B b y B Pred R B y =
46 9 45 pm2.61dne R Fr B R Se B b B y B Pred R B y =
47 46 ex R Fr B R Se B b B y B Pred R B y =
48 47 exlimdv R Fr B R Se B b b B y B Pred R B y =
49 4 48 syl5bi R Fr B R Se B B y B Pred R B y =
50 3 49 syl6com R Fr A R Se A B A B y B Pred R B y =
51 50 imp32 R Fr A R Se A B A B y B Pred R B y =