Step |
Hyp |
Ref |
Expression |
1 |
|
frss |
|- ( B C_ A -> ( R Fr A -> R Fr B ) ) |
2 |
|
sess2 |
|- ( B C_ A -> ( R Se A -> R Se B ) ) |
3 |
1 2
|
anim12d |
|- ( B C_ A -> ( ( R Fr A /\ R Se A ) -> ( R Fr B /\ R Se B ) ) ) |
4 |
|
n0 |
|- ( B =/= (/) <-> E. b b e. B ) |
5 |
|
predeq3 |
|- ( y = b -> Pred ( R , B , y ) = Pred ( R , B , b ) ) |
6 |
5
|
eqeq1d |
|- ( y = b -> ( Pred ( R , B , y ) = (/) <-> Pred ( R , B , b ) = (/) ) ) |
7 |
6
|
rspcev |
|- ( ( b e. B /\ Pred ( R , B , b ) = (/) ) -> E. y e. B Pred ( R , B , y ) = (/) ) |
8 |
7
|
ex |
|- ( b e. B -> ( Pred ( R , B , b ) = (/) -> E. y e. B Pred ( R , B , y ) = (/) ) ) |
9 |
8
|
adantl |
|- ( ( ( R Fr B /\ R Se B ) /\ b e. B ) -> ( Pred ( R , B , b ) = (/) -> E. y e. B Pred ( R , B , y ) = (/) ) ) |
10 |
|
setlikespec |
|- ( ( b e. B /\ R Se B ) -> Pred ( R , B , b ) e. _V ) |
11 |
|
trpredpred |
|- ( Pred ( R , B , b ) e. _V -> Pred ( R , B , b ) C_ TrPred ( R , B , b ) ) |
12 |
|
ssn0 |
|- ( ( Pred ( R , B , b ) C_ TrPred ( R , B , b ) /\ Pred ( R , B , b ) =/= (/) ) -> TrPred ( R , B , b ) =/= (/) ) |
13 |
12
|
ex |
|- ( Pred ( R , B , b ) C_ TrPred ( R , B , b ) -> ( Pred ( R , B , b ) =/= (/) -> TrPred ( R , B , b ) =/= (/) ) ) |
14 |
11 13
|
syl |
|- ( Pred ( R , B , b ) e. _V -> ( Pred ( R , B , b ) =/= (/) -> TrPred ( R , B , b ) =/= (/) ) ) |
15 |
|
trpredss |
|- ( Pred ( R , B , b ) e. _V -> TrPred ( R , B , b ) C_ B ) |
16 |
14 15
|
jctild |
|- ( Pred ( R , B , b ) e. _V -> ( Pred ( R , B , b ) =/= (/) -> ( TrPred ( R , B , b ) C_ B /\ TrPred ( R , B , b ) =/= (/) ) ) ) |
17 |
10 16
|
syl |
|- ( ( b e. B /\ R Se B ) -> ( Pred ( R , B , b ) =/= (/) -> ( TrPred ( R , B , b ) C_ B /\ TrPred ( R , B , b ) =/= (/) ) ) ) |
18 |
17
|
adantr |
|- ( ( ( b e. B /\ R Se B ) /\ R Fr B ) -> ( Pred ( R , B , b ) =/= (/) -> ( TrPred ( R , B , b ) C_ B /\ TrPred ( R , B , b ) =/= (/) ) ) ) |
19 |
|
trpredex |
|- TrPred ( R , B , b ) e. _V |
20 |
|
sseq1 |
|- ( c = TrPred ( R , B , b ) -> ( c C_ B <-> TrPred ( R , B , b ) C_ B ) ) |
21 |
|
neeq1 |
|- ( c = TrPred ( R , B , b ) -> ( c =/= (/) <-> TrPred ( R , B , b ) =/= (/) ) ) |
22 |
20 21
|
anbi12d |
|- ( c = TrPred ( R , B , b ) -> ( ( c C_ B /\ c =/= (/) ) <-> ( TrPred ( R , B , b ) C_ B /\ TrPred ( R , B , b ) =/= (/) ) ) ) |
23 |
|
predeq2 |
|- ( c = TrPred ( R , B , b ) -> Pred ( R , c , y ) = Pred ( R , TrPred ( R , B , b ) , y ) ) |
24 |
23
|
eqeq1d |
|- ( c = TrPred ( R , B , b ) -> ( Pred ( R , c , y ) = (/) <-> Pred ( R , TrPred ( R , B , b ) , y ) = (/) ) ) |
25 |
24
|
rexeqbi1dv |
|- ( c = TrPred ( R , B , b ) -> ( E. y e. c Pred ( R , c , y ) = (/) <-> E. y e. TrPred ( R , B , b ) Pred ( R , TrPred ( R , B , b ) , y ) = (/) ) ) |
26 |
22 25
|
imbi12d |
|- ( c = TrPred ( R , B , b ) -> ( ( ( c C_ B /\ c =/= (/) ) -> E. y e. c Pred ( R , c , y ) = (/) ) <-> ( ( TrPred ( R , B , b ) C_ B /\ TrPred ( R , B , b ) =/= (/) ) -> E. y e. TrPred ( R , B , b ) Pred ( R , TrPred ( R , B , b ) , y ) = (/) ) ) ) |
27 |
26
|
imbi2d |
|- ( c = TrPred ( R , B , b ) -> ( ( R Fr B -> ( ( c C_ B /\ c =/= (/) ) -> E. y e. c Pred ( R , c , y ) = (/) ) ) <-> ( R Fr B -> ( ( TrPred ( R , B , b ) C_ B /\ TrPred ( R , B , b ) =/= (/) ) -> E. y e. TrPred ( R , B , b ) Pred ( R , TrPred ( R , B , b ) , y ) = (/) ) ) ) ) |
28 |
|
dffr4 |
|- ( R Fr B <-> A. c ( ( c C_ B /\ c =/= (/) ) -> E. y e. c Pred ( R , c , y ) = (/) ) ) |
29 |
|
sp |
|- ( A. c ( ( c C_ B /\ c =/= (/) ) -> E. y e. c Pred ( R , c , y ) = (/) ) -> ( ( c C_ B /\ c =/= (/) ) -> E. y e. c Pred ( R , c , y ) = (/) ) ) |
30 |
28 29
|
sylbi |
|- ( R Fr B -> ( ( c C_ B /\ c =/= (/) ) -> E. y e. c Pred ( R , c , y ) = (/) ) ) |
31 |
19 27 30
|
vtocl |
|- ( R Fr B -> ( ( TrPred ( R , B , b ) C_ B /\ TrPred ( R , B , b ) =/= (/) ) -> E. y e. TrPred ( R , B , b ) Pred ( R , TrPred ( R , B , b ) , y ) = (/) ) ) |
32 |
10 15
|
syl |
|- ( ( b e. B /\ R Se B ) -> TrPred ( R , B , b ) C_ B ) |
33 |
32
|
adantr |
|- ( ( ( b e. B /\ R Se B ) /\ y e. TrPred ( R , B , b ) ) -> TrPred ( R , B , b ) C_ B ) |
34 |
|
trpredtr |
|- ( ( b e. B /\ R Se B ) -> ( y e. TrPred ( R , B , b ) -> Pred ( R , B , y ) C_ TrPred ( R , B , b ) ) ) |
35 |
34
|
imp |
|- ( ( ( b e. B /\ R Se B ) /\ y e. TrPred ( R , B , b ) ) -> Pred ( R , B , y ) C_ TrPred ( R , B , b ) ) |
36 |
|
sspred |
|- ( ( TrPred ( R , B , b ) C_ B /\ Pred ( R , B , y ) C_ TrPred ( R , B , b ) ) -> Pred ( R , B , y ) = Pred ( R , TrPred ( R , B , b ) , y ) ) |
37 |
33 35 36
|
syl2anc |
|- ( ( ( b e. B /\ R Se B ) /\ y e. TrPred ( R , B , b ) ) -> Pred ( R , B , y ) = Pred ( R , TrPred ( R , B , b ) , y ) ) |
38 |
37
|
eqeq1d |
|- ( ( ( b e. B /\ R Se B ) /\ y e. TrPred ( R , B , b ) ) -> ( Pred ( R , B , y ) = (/) <-> Pred ( R , TrPred ( R , B , b ) , y ) = (/) ) ) |
39 |
38
|
biimprd |
|- ( ( ( b e. B /\ R Se B ) /\ y e. TrPred ( R , B , b ) ) -> ( Pred ( R , TrPred ( R , B , b ) , y ) = (/) -> Pred ( R , B , y ) = (/) ) ) |
40 |
39
|
reximdva |
|- ( ( b e. B /\ R Se B ) -> ( E. y e. TrPred ( R , B , b ) Pred ( R , TrPred ( R , B , b ) , y ) = (/) -> E. y e. TrPred ( R , B , b ) Pred ( R , B , y ) = (/) ) ) |
41 |
|
ssrexv |
|- ( TrPred ( R , B , b ) C_ B -> ( E. y e. TrPred ( R , B , b ) Pred ( R , B , y ) = (/) -> E. y e. B Pred ( R , B , y ) = (/) ) ) |
42 |
32 40 41
|
sylsyld |
|- ( ( b e. B /\ R Se B ) -> ( E. y e. TrPred ( R , B , b ) Pred ( R , TrPred ( R , B , b ) , y ) = (/) -> E. y e. B Pred ( R , B , y ) = (/) ) ) |
43 |
31 42
|
sylan9r |
|- ( ( ( b e. B /\ R Se B ) /\ R Fr B ) -> ( ( TrPred ( R , B , b ) C_ B /\ TrPred ( R , B , b ) =/= (/) ) -> E. y e. B Pred ( R , B , y ) = (/) ) ) |
44 |
18 43
|
syld |
|- ( ( ( b e. B /\ R Se B ) /\ R Fr B ) -> ( Pred ( R , B , b ) =/= (/) -> E. y e. B Pred ( R , B , y ) = (/) ) ) |
45 |
44
|
an31s |
|- ( ( ( R Fr B /\ R Se B ) /\ b e. B ) -> ( Pred ( R , B , b ) =/= (/) -> E. y e. B Pred ( R , B , y ) = (/) ) ) |
46 |
9 45
|
pm2.61dne |
|- ( ( ( R Fr B /\ R Se B ) /\ b e. B ) -> E. y e. B Pred ( R , B , y ) = (/) ) |
47 |
46
|
ex |
|- ( ( R Fr B /\ R Se B ) -> ( b e. B -> E. y e. B Pred ( R , B , y ) = (/) ) ) |
48 |
47
|
exlimdv |
|- ( ( R Fr B /\ R Se B ) -> ( E. b b e. B -> E. y e. B Pred ( R , B , y ) = (/) ) ) |
49 |
4 48
|
syl5bi |
|- ( ( R Fr B /\ R Se B ) -> ( B =/= (/) -> E. y e. B Pred ( R , B , y ) = (/) ) ) |
50 |
3 49
|
syl6com |
|- ( ( R Fr A /\ R Se A ) -> ( B C_ A -> ( B =/= (/) -> E. y e. B Pred ( R , B , y ) = (/) ) ) ) |
51 |
50
|
imp32 |
|- ( ( ( R Fr A /\ R Se A ) /\ ( B C_ A /\ B =/= (/) ) ) -> E. y e. B Pred ( R , B , y ) = (/) ) |