Step |
Hyp |
Ref |
Expression |
1 |
|
frss |
⊢ ( 𝐵 ⊆ 𝐴 → ( 𝑅 Fr 𝐴 → 𝑅 Fr 𝐵 ) ) |
2 |
|
sess2 |
⊢ ( 𝐵 ⊆ 𝐴 → ( 𝑅 Se 𝐴 → 𝑅 Se 𝐵 ) ) |
3 |
1 2
|
anim12d |
⊢ ( 𝐵 ⊆ 𝐴 → ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑅 Fr 𝐵 ∧ 𝑅 Se 𝐵 ) ) ) |
4 |
|
n0 |
⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑏 𝑏 ∈ 𝐵 ) |
5 |
|
predeq3 |
⊢ ( 𝑦 = 𝑏 → Pred ( 𝑅 , 𝐵 , 𝑦 ) = Pred ( 𝑅 , 𝐵 , 𝑏 ) ) |
6 |
5
|
eqeq1d |
⊢ ( 𝑦 = 𝑏 → ( Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ↔ Pred ( 𝑅 , 𝐵 , 𝑏 ) = ∅ ) ) |
7 |
6
|
rspcev |
⊢ ( ( 𝑏 ∈ 𝐵 ∧ Pred ( 𝑅 , 𝐵 , 𝑏 ) = ∅ ) → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) |
8 |
7
|
ex |
⊢ ( 𝑏 ∈ 𝐵 → ( Pred ( 𝑅 , 𝐵 , 𝑏 ) = ∅ → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝑅 Fr 𝐵 ∧ 𝑅 Se 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( Pred ( 𝑅 , 𝐵 , 𝑏 ) = ∅ → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
10 |
|
setlikespec |
⊢ ( ( 𝑏 ∈ 𝐵 ∧ 𝑅 Se 𝐵 ) → Pred ( 𝑅 , 𝐵 , 𝑏 ) ∈ V ) |
11 |
|
trpredpred |
⊢ ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ∈ V → Pred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ) |
12 |
|
ssn0 |
⊢ ( ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ∧ Pred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ ) → TrPred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ ) |
13 |
12
|
ex |
⊢ ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ TrPred ( 𝑅 , 𝐵 , 𝑏 ) → ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ → TrPred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ ) ) |
14 |
11 13
|
syl |
⊢ ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ∈ V → ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ → TrPred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ ) ) |
15 |
|
trpredss |
⊢ ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ∈ V → TrPred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ 𝐵 ) |
16 |
14 15
|
jctild |
⊢ ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ∈ V → ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ → ( TrPred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ ) ) ) |
17 |
10 16
|
syl |
⊢ ( ( 𝑏 ∈ 𝐵 ∧ 𝑅 Se 𝐵 ) → ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ → ( TrPred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ ) ) ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝑏 ∈ 𝐵 ∧ 𝑅 Se 𝐵 ) ∧ 𝑅 Fr 𝐵 ) → ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ → ( TrPred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ ) ) ) |
19 |
|
trpredex |
⊢ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ∈ V |
20 |
|
sseq1 |
⊢ ( 𝑐 = TrPred ( 𝑅 , 𝐵 , 𝑏 ) → ( 𝑐 ⊆ 𝐵 ↔ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ 𝐵 ) ) |
21 |
|
neeq1 |
⊢ ( 𝑐 = TrPred ( 𝑅 , 𝐵 , 𝑏 ) → ( 𝑐 ≠ ∅ ↔ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ ) ) |
22 |
20 21
|
anbi12d |
⊢ ( 𝑐 = TrPred ( 𝑅 , 𝐵 , 𝑏 ) → ( ( 𝑐 ⊆ 𝐵 ∧ 𝑐 ≠ ∅ ) ↔ ( TrPred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ ) ) ) |
23 |
|
predeq2 |
⊢ ( 𝑐 = TrPred ( 𝑅 , 𝐵 , 𝑏 ) → Pred ( 𝑅 , 𝑐 , 𝑦 ) = Pred ( 𝑅 , TrPred ( 𝑅 , 𝐵 , 𝑏 ) , 𝑦 ) ) |
24 |
23
|
eqeq1d |
⊢ ( 𝑐 = TrPred ( 𝑅 , 𝐵 , 𝑏 ) → ( Pred ( 𝑅 , 𝑐 , 𝑦 ) = ∅ ↔ Pred ( 𝑅 , TrPred ( 𝑅 , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ ) ) |
25 |
24
|
rexeqbi1dv |
⊢ ( 𝑐 = TrPred ( 𝑅 , 𝐵 , 𝑏 ) → ( ∃ 𝑦 ∈ 𝑐 Pred ( 𝑅 , 𝑐 , 𝑦 ) = ∅ ↔ ∃ 𝑦 ∈ TrPred ( 𝑅 , 𝐵 , 𝑏 ) Pred ( 𝑅 , TrPred ( 𝑅 , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ ) ) |
26 |
22 25
|
imbi12d |
⊢ ( 𝑐 = TrPred ( 𝑅 , 𝐵 , 𝑏 ) → ( ( ( 𝑐 ⊆ 𝐵 ∧ 𝑐 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑐 Pred ( 𝑅 , 𝑐 , 𝑦 ) = ∅ ) ↔ ( ( TrPred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ ) → ∃ 𝑦 ∈ TrPred ( 𝑅 , 𝐵 , 𝑏 ) Pred ( 𝑅 , TrPred ( 𝑅 , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ ) ) ) |
27 |
26
|
imbi2d |
⊢ ( 𝑐 = TrPred ( 𝑅 , 𝐵 , 𝑏 ) → ( ( 𝑅 Fr 𝐵 → ( ( 𝑐 ⊆ 𝐵 ∧ 𝑐 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑐 Pred ( 𝑅 , 𝑐 , 𝑦 ) = ∅ ) ) ↔ ( 𝑅 Fr 𝐵 → ( ( TrPred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ ) → ∃ 𝑦 ∈ TrPred ( 𝑅 , 𝐵 , 𝑏 ) Pred ( 𝑅 , TrPred ( 𝑅 , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ ) ) ) ) |
28 |
|
dffr4 |
⊢ ( 𝑅 Fr 𝐵 ↔ ∀ 𝑐 ( ( 𝑐 ⊆ 𝐵 ∧ 𝑐 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑐 Pred ( 𝑅 , 𝑐 , 𝑦 ) = ∅ ) ) |
29 |
|
sp |
⊢ ( ∀ 𝑐 ( ( 𝑐 ⊆ 𝐵 ∧ 𝑐 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑐 Pred ( 𝑅 , 𝑐 , 𝑦 ) = ∅ ) → ( ( 𝑐 ⊆ 𝐵 ∧ 𝑐 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑐 Pred ( 𝑅 , 𝑐 , 𝑦 ) = ∅ ) ) |
30 |
28 29
|
sylbi |
⊢ ( 𝑅 Fr 𝐵 → ( ( 𝑐 ⊆ 𝐵 ∧ 𝑐 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑐 Pred ( 𝑅 , 𝑐 , 𝑦 ) = ∅ ) ) |
31 |
19 27 30
|
vtocl |
⊢ ( 𝑅 Fr 𝐵 → ( ( TrPred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ ) → ∃ 𝑦 ∈ TrPred ( 𝑅 , 𝐵 , 𝑏 ) Pred ( 𝑅 , TrPred ( 𝑅 , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ ) ) |
32 |
10 15
|
syl |
⊢ ( ( 𝑏 ∈ 𝐵 ∧ 𝑅 Se 𝐵 ) → TrPred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ 𝐵 ) |
33 |
32
|
adantr |
⊢ ( ( ( 𝑏 ∈ 𝐵 ∧ 𝑅 Se 𝐵 ) ∧ 𝑦 ∈ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ) → TrPred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ 𝐵 ) |
34 |
|
trpredtr |
⊢ ( ( 𝑏 ∈ 𝐵 ∧ 𝑅 Se 𝐵 ) → ( 𝑦 ∈ TrPred ( 𝑅 , 𝐵 , 𝑏 ) → Pred ( 𝑅 , 𝐵 , 𝑦 ) ⊆ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ) ) |
35 |
34
|
imp |
⊢ ( ( ( 𝑏 ∈ 𝐵 ∧ 𝑅 Se 𝐵 ) ∧ 𝑦 ∈ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ) → Pred ( 𝑅 , 𝐵 , 𝑦 ) ⊆ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ) |
36 |
|
sspred |
⊢ ( ( TrPred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐵 , 𝑦 ) ⊆ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ) → Pred ( 𝑅 , 𝐵 , 𝑦 ) = Pred ( 𝑅 , TrPred ( 𝑅 , 𝐵 , 𝑏 ) , 𝑦 ) ) |
37 |
33 35 36
|
syl2anc |
⊢ ( ( ( 𝑏 ∈ 𝐵 ∧ 𝑅 Se 𝐵 ) ∧ 𝑦 ∈ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ) → Pred ( 𝑅 , 𝐵 , 𝑦 ) = Pred ( 𝑅 , TrPred ( 𝑅 , 𝐵 , 𝑏 ) , 𝑦 ) ) |
38 |
37
|
eqeq1d |
⊢ ( ( ( 𝑏 ∈ 𝐵 ∧ 𝑅 Se 𝐵 ) ∧ 𝑦 ∈ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ) → ( Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ↔ Pred ( 𝑅 , TrPred ( 𝑅 , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ ) ) |
39 |
38
|
biimprd |
⊢ ( ( ( 𝑏 ∈ 𝐵 ∧ 𝑅 Se 𝐵 ) ∧ 𝑦 ∈ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ) → ( Pred ( 𝑅 , TrPred ( 𝑅 , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ → Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
40 |
39
|
reximdva |
⊢ ( ( 𝑏 ∈ 𝐵 ∧ 𝑅 Se 𝐵 ) → ( ∃ 𝑦 ∈ TrPred ( 𝑅 , 𝐵 , 𝑏 ) Pred ( 𝑅 , TrPred ( 𝑅 , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ → ∃ 𝑦 ∈ TrPred ( 𝑅 , 𝐵 , 𝑏 ) Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
41 |
|
ssrexv |
⊢ ( TrPred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ 𝐵 → ( ∃ 𝑦 ∈ TrPred ( 𝑅 , 𝐵 , 𝑏 ) Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
42 |
32 40 41
|
sylsyld |
⊢ ( ( 𝑏 ∈ 𝐵 ∧ 𝑅 Se 𝐵 ) → ( ∃ 𝑦 ∈ TrPred ( 𝑅 , 𝐵 , 𝑏 ) Pred ( 𝑅 , TrPred ( 𝑅 , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
43 |
31 42
|
sylan9r |
⊢ ( ( ( 𝑏 ∈ 𝐵 ∧ 𝑅 Se 𝐵 ) ∧ 𝑅 Fr 𝐵 ) → ( ( TrPred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ ) → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
44 |
18 43
|
syld |
⊢ ( ( ( 𝑏 ∈ 𝐵 ∧ 𝑅 Se 𝐵 ) ∧ 𝑅 Fr 𝐵 ) → ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
45 |
44
|
an31s |
⊢ ( ( ( 𝑅 Fr 𝐵 ∧ 𝑅 Se 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
46 |
9 45
|
pm2.61dne |
⊢ ( ( ( 𝑅 Fr 𝐵 ∧ 𝑅 Se 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) |
47 |
46
|
ex |
⊢ ( ( 𝑅 Fr 𝐵 ∧ 𝑅 Se 𝐵 ) → ( 𝑏 ∈ 𝐵 → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
48 |
47
|
exlimdv |
⊢ ( ( 𝑅 Fr 𝐵 ∧ 𝑅 Se 𝐵 ) → ( ∃ 𝑏 𝑏 ∈ 𝐵 → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
49 |
4 48
|
syl5bi |
⊢ ( ( 𝑅 Fr 𝐵 ∧ 𝑅 Se 𝐵 ) → ( 𝐵 ≠ ∅ → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
50 |
3 49
|
syl6com |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝐵 ⊆ 𝐴 → ( 𝐵 ≠ ∅ → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) ) |
51 |
50
|
imp32 |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) |