Metamath Proof Explorer


Theorem frmin

Description: Every (possibly proper) subclass of a class A with a founded, set-like relation R has a minimal element. Lemma 4.3 of Don Monk's notes for Advanced Set Theory, which can be found at http://euclid.colorado.edu/~monkd/settheory . This is a very strong generalization of tz6.26 and tz7.5 . (Contributed by Scott Fenton, 4-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Assertion frmin ( ( ( 𝑅 Fr 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐵𝐴𝐵 ≠ ∅ ) ) → ∃ 𝑦𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ )

Proof

Step Hyp Ref Expression
1 frss ( 𝐵𝐴 → ( 𝑅 Fr 𝐴𝑅 Fr 𝐵 ) )
2 sess2 ( 𝐵𝐴 → ( 𝑅 Se 𝐴𝑅 Se 𝐵 ) )
3 1 2 anim12d ( 𝐵𝐴 → ( ( 𝑅 Fr 𝐴𝑅 Se 𝐴 ) → ( 𝑅 Fr 𝐵𝑅 Se 𝐵 ) ) )
4 n0 ( 𝐵 ≠ ∅ ↔ ∃ 𝑏 𝑏𝐵 )
5 predeq3 ( 𝑦 = 𝑏 → Pred ( 𝑅 , 𝐵 , 𝑦 ) = Pred ( 𝑅 , 𝐵 , 𝑏 ) )
6 5 eqeq1d ( 𝑦 = 𝑏 → ( Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ↔ Pred ( 𝑅 , 𝐵 , 𝑏 ) = ∅ ) )
7 6 rspcev ( ( 𝑏𝐵 ∧ Pred ( 𝑅 , 𝐵 , 𝑏 ) = ∅ ) → ∃ 𝑦𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ )
8 7 ex ( 𝑏𝐵 → ( Pred ( 𝑅 , 𝐵 , 𝑏 ) = ∅ → ∃ 𝑦𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) )
9 8 adantl ( ( ( 𝑅 Fr 𝐵𝑅 Se 𝐵 ) ∧ 𝑏𝐵 ) → ( Pred ( 𝑅 , 𝐵 , 𝑏 ) = ∅ → ∃ 𝑦𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) )
10 setlikespec ( ( 𝑏𝐵𝑅 Se 𝐵 ) → Pred ( 𝑅 , 𝐵 , 𝑏 ) ∈ V )
11 trpredpred ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ∈ V → Pred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ TrPred ( 𝑅 , 𝐵 , 𝑏 ) )
12 ssn0 ( ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ∧ Pred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ ) → TrPred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ )
13 12 ex ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ TrPred ( 𝑅 , 𝐵 , 𝑏 ) → ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ → TrPred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ ) )
14 11 13 syl ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ∈ V → ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ → TrPred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ ) )
15 trpredss ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ∈ V → TrPred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ 𝐵 )
16 14 15 jctild ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ∈ V → ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ → ( TrPred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ ) ) )
17 10 16 syl ( ( 𝑏𝐵𝑅 Se 𝐵 ) → ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ → ( TrPred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ ) ) )
18 17 adantr ( ( ( 𝑏𝐵𝑅 Se 𝐵 ) ∧ 𝑅 Fr 𝐵 ) → ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ → ( TrPred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ ) ) )
19 trpredex TrPred ( 𝑅 , 𝐵 , 𝑏 ) ∈ V
20 sseq1 ( 𝑐 = TrPred ( 𝑅 , 𝐵 , 𝑏 ) → ( 𝑐𝐵 ↔ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ 𝐵 ) )
21 neeq1 ( 𝑐 = TrPred ( 𝑅 , 𝐵 , 𝑏 ) → ( 𝑐 ≠ ∅ ↔ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ ) )
22 20 21 anbi12d ( 𝑐 = TrPred ( 𝑅 , 𝐵 , 𝑏 ) → ( ( 𝑐𝐵𝑐 ≠ ∅ ) ↔ ( TrPred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ ) ) )
23 predeq2 ( 𝑐 = TrPred ( 𝑅 , 𝐵 , 𝑏 ) → Pred ( 𝑅 , 𝑐 , 𝑦 ) = Pred ( 𝑅 , TrPred ( 𝑅 , 𝐵 , 𝑏 ) , 𝑦 ) )
24 23 eqeq1d ( 𝑐 = TrPred ( 𝑅 , 𝐵 , 𝑏 ) → ( Pred ( 𝑅 , 𝑐 , 𝑦 ) = ∅ ↔ Pred ( 𝑅 , TrPred ( 𝑅 , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ ) )
25 24 rexeqbi1dv ( 𝑐 = TrPred ( 𝑅 , 𝐵 , 𝑏 ) → ( ∃ 𝑦𝑐 Pred ( 𝑅 , 𝑐 , 𝑦 ) = ∅ ↔ ∃ 𝑦 ∈ TrPred ( 𝑅 , 𝐵 , 𝑏 ) Pred ( 𝑅 , TrPred ( 𝑅 , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ ) )
26 22 25 imbi12d ( 𝑐 = TrPred ( 𝑅 , 𝐵 , 𝑏 ) → ( ( ( 𝑐𝐵𝑐 ≠ ∅ ) → ∃ 𝑦𝑐 Pred ( 𝑅 , 𝑐 , 𝑦 ) = ∅ ) ↔ ( ( TrPred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ ) → ∃ 𝑦 ∈ TrPred ( 𝑅 , 𝐵 , 𝑏 ) Pred ( 𝑅 , TrPred ( 𝑅 , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ ) ) )
27 26 imbi2d ( 𝑐 = TrPred ( 𝑅 , 𝐵 , 𝑏 ) → ( ( 𝑅 Fr 𝐵 → ( ( 𝑐𝐵𝑐 ≠ ∅ ) → ∃ 𝑦𝑐 Pred ( 𝑅 , 𝑐 , 𝑦 ) = ∅ ) ) ↔ ( 𝑅 Fr 𝐵 → ( ( TrPred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ ) → ∃ 𝑦 ∈ TrPred ( 𝑅 , 𝐵 , 𝑏 ) Pred ( 𝑅 , TrPred ( 𝑅 , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ ) ) ) )
28 dffr4 ( 𝑅 Fr 𝐵 ↔ ∀ 𝑐 ( ( 𝑐𝐵𝑐 ≠ ∅ ) → ∃ 𝑦𝑐 Pred ( 𝑅 , 𝑐 , 𝑦 ) = ∅ ) )
29 sp ( ∀ 𝑐 ( ( 𝑐𝐵𝑐 ≠ ∅ ) → ∃ 𝑦𝑐 Pred ( 𝑅 , 𝑐 , 𝑦 ) = ∅ ) → ( ( 𝑐𝐵𝑐 ≠ ∅ ) → ∃ 𝑦𝑐 Pred ( 𝑅 , 𝑐 , 𝑦 ) = ∅ ) )
30 28 29 sylbi ( 𝑅 Fr 𝐵 → ( ( 𝑐𝐵𝑐 ≠ ∅ ) → ∃ 𝑦𝑐 Pred ( 𝑅 , 𝑐 , 𝑦 ) = ∅ ) )
31 19 27 30 vtocl ( 𝑅 Fr 𝐵 → ( ( TrPred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ ) → ∃ 𝑦 ∈ TrPred ( 𝑅 , 𝐵 , 𝑏 ) Pred ( 𝑅 , TrPred ( 𝑅 , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ ) )
32 10 15 syl ( ( 𝑏𝐵𝑅 Se 𝐵 ) → TrPred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ 𝐵 )
33 32 adantr ( ( ( 𝑏𝐵𝑅 Se 𝐵 ) ∧ 𝑦 ∈ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ) → TrPred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ 𝐵 )
34 trpredtr ( ( 𝑏𝐵𝑅 Se 𝐵 ) → ( 𝑦 ∈ TrPred ( 𝑅 , 𝐵 , 𝑏 ) → Pred ( 𝑅 , 𝐵 , 𝑦 ) ⊆ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ) )
35 34 imp ( ( ( 𝑏𝐵𝑅 Se 𝐵 ) ∧ 𝑦 ∈ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ) → Pred ( 𝑅 , 𝐵 , 𝑦 ) ⊆ TrPred ( 𝑅 , 𝐵 , 𝑏 ) )
36 sspred ( ( TrPred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐵 , 𝑦 ) ⊆ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ) → Pred ( 𝑅 , 𝐵 , 𝑦 ) = Pred ( 𝑅 , TrPred ( 𝑅 , 𝐵 , 𝑏 ) , 𝑦 ) )
37 33 35 36 syl2anc ( ( ( 𝑏𝐵𝑅 Se 𝐵 ) ∧ 𝑦 ∈ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ) → Pred ( 𝑅 , 𝐵 , 𝑦 ) = Pred ( 𝑅 , TrPred ( 𝑅 , 𝐵 , 𝑏 ) , 𝑦 ) )
38 37 eqeq1d ( ( ( 𝑏𝐵𝑅 Se 𝐵 ) ∧ 𝑦 ∈ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ) → ( Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ↔ Pred ( 𝑅 , TrPred ( 𝑅 , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ ) )
39 38 biimprd ( ( ( 𝑏𝐵𝑅 Se 𝐵 ) ∧ 𝑦 ∈ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ) → ( Pred ( 𝑅 , TrPred ( 𝑅 , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ → Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) )
40 39 reximdva ( ( 𝑏𝐵𝑅 Se 𝐵 ) → ( ∃ 𝑦 ∈ TrPred ( 𝑅 , 𝐵 , 𝑏 ) Pred ( 𝑅 , TrPred ( 𝑅 , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ → ∃ 𝑦 ∈ TrPred ( 𝑅 , 𝐵 , 𝑏 ) Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) )
41 ssrexv ( TrPred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ 𝐵 → ( ∃ 𝑦 ∈ TrPred ( 𝑅 , 𝐵 , 𝑏 ) Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ → ∃ 𝑦𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) )
42 32 40 41 sylsyld ( ( 𝑏𝐵𝑅 Se 𝐵 ) → ( ∃ 𝑦 ∈ TrPred ( 𝑅 , 𝐵 , 𝑏 ) Pred ( 𝑅 , TrPred ( 𝑅 , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ → ∃ 𝑦𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) )
43 31 42 sylan9r ( ( ( 𝑏𝐵𝑅 Se 𝐵 ) ∧ 𝑅 Fr 𝐵 ) → ( ( TrPred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ TrPred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ ) → ∃ 𝑦𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) )
44 18 43 syld ( ( ( 𝑏𝐵𝑅 Se 𝐵 ) ∧ 𝑅 Fr 𝐵 ) → ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ → ∃ 𝑦𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) )
45 44 an31s ( ( ( 𝑅 Fr 𝐵𝑅 Se 𝐵 ) ∧ 𝑏𝐵 ) → ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ → ∃ 𝑦𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) )
46 9 45 pm2.61dne ( ( ( 𝑅 Fr 𝐵𝑅 Se 𝐵 ) ∧ 𝑏𝐵 ) → ∃ 𝑦𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ )
47 46 ex ( ( 𝑅 Fr 𝐵𝑅 Se 𝐵 ) → ( 𝑏𝐵 → ∃ 𝑦𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) )
48 47 exlimdv ( ( 𝑅 Fr 𝐵𝑅 Se 𝐵 ) → ( ∃ 𝑏 𝑏𝐵 → ∃ 𝑦𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) )
49 4 48 syl5bi ( ( 𝑅 Fr 𝐵𝑅 Se 𝐵 ) → ( 𝐵 ≠ ∅ → ∃ 𝑦𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) )
50 3 49 syl6com ( ( 𝑅 Fr 𝐴𝑅 Se 𝐴 ) → ( 𝐵𝐴 → ( 𝐵 ≠ ∅ → ∃ 𝑦𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) )
51 50 imp32 ( ( ( 𝑅 Fr 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐵𝐴𝐵 ≠ ∅ ) ) → ∃ 𝑦𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ )