| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ssralv | 
							⊢ ( 𝐴  ⊆  𝐵  →  ( ∀ 𝑥  ∈  𝐵 { 𝑦  ∈  𝐵  ∣  𝑦 𝑅 𝑥 }  ∈  V  →  ∀ 𝑥  ∈  𝐴 { 𝑦  ∈  𝐵  ∣  𝑦 𝑅 𝑥 }  ∈  V ) )  | 
						
						
							| 2 | 
							
								
							 | 
							rabss2 | 
							⊢ ( 𝐴  ⊆  𝐵  →  { 𝑦  ∈  𝐴  ∣  𝑦 𝑅 𝑥 }  ⊆  { 𝑦  ∈  𝐵  ∣  𝑦 𝑅 𝑥 } )  | 
						
						
							| 3 | 
							
								
							 | 
							ssexg | 
							⊢ ( ( { 𝑦  ∈  𝐴  ∣  𝑦 𝑅 𝑥 }  ⊆  { 𝑦  ∈  𝐵  ∣  𝑦 𝑅 𝑥 }  ∧  { 𝑦  ∈  𝐵  ∣  𝑦 𝑅 𝑥 }  ∈  V )  →  { 𝑦  ∈  𝐴  ∣  𝑦 𝑅 𝑥 }  ∈  V )  | 
						
						
							| 4 | 
							
								3
							 | 
							ex | 
							⊢ ( { 𝑦  ∈  𝐴  ∣  𝑦 𝑅 𝑥 }  ⊆  { 𝑦  ∈  𝐵  ∣  𝑦 𝑅 𝑥 }  →  ( { 𝑦  ∈  𝐵  ∣  𝑦 𝑅 𝑥 }  ∈  V  →  { 𝑦  ∈  𝐴  ∣  𝑦 𝑅 𝑥 }  ∈  V ) )  | 
						
						
							| 5 | 
							
								2 4
							 | 
							syl | 
							⊢ ( 𝐴  ⊆  𝐵  →  ( { 𝑦  ∈  𝐵  ∣  𝑦 𝑅 𝑥 }  ∈  V  →  { 𝑦  ∈  𝐴  ∣  𝑦 𝑅 𝑥 }  ∈  V ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							ralimdv | 
							⊢ ( 𝐴  ⊆  𝐵  →  ( ∀ 𝑥  ∈  𝐴 { 𝑦  ∈  𝐵  ∣  𝑦 𝑅 𝑥 }  ∈  V  →  ∀ 𝑥  ∈  𝐴 { 𝑦  ∈  𝐴  ∣  𝑦 𝑅 𝑥 }  ∈  V ) )  | 
						
						
							| 7 | 
							
								1 6
							 | 
							syld | 
							⊢ ( 𝐴  ⊆  𝐵  →  ( ∀ 𝑥  ∈  𝐵 { 𝑦  ∈  𝐵  ∣  𝑦 𝑅 𝑥 }  ∈  V  →  ∀ 𝑥  ∈  𝐴 { 𝑦  ∈  𝐴  ∣  𝑦 𝑅 𝑥 }  ∈  V ) )  | 
						
						
							| 8 | 
							
								
							 | 
							df-se | 
							⊢ ( 𝑅  Se  𝐵  ↔  ∀ 𝑥  ∈  𝐵 { 𝑦  ∈  𝐵  ∣  𝑦 𝑅 𝑥 }  ∈  V )  | 
						
						
							| 9 | 
							
								
							 | 
							df-se | 
							⊢ ( 𝑅  Se  𝐴  ↔  ∀ 𝑥  ∈  𝐴 { 𝑦  ∈  𝐴  ∣  𝑦 𝑅 𝑥 }  ∈  V )  | 
						
						
							| 10 | 
							
								7 8 9
							 | 
							3imtr4g | 
							⊢ ( 𝐴  ⊆  𝐵  →  ( 𝑅  Se  𝐵  →  𝑅  Se  𝐴 ) )  |