| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssrab2 |
|- { y e. A | y R X } C_ A |
| 2 |
|
sseqin2 |
|- ( { y e. A | y R X } C_ A <-> ( A i^i { y e. A | y R X } ) = { y e. A | y R X } ) |
| 3 |
1 2
|
mpbi |
|- ( A i^i { y e. A | y R X } ) = { y e. A | y R X } |
| 4 |
|
dfrab2 |
|- { y e. A | y R X } = ( { y | y R X } i^i A ) |
| 5 |
3 4
|
eqtr2i |
|- ( { y | y R X } i^i A ) = ( A i^i { y e. A | y R X } ) |
| 6 |
|
iniseg |
|- ( X e. _V -> ( `' R " { X } ) = { y | y R X } ) |
| 7 |
6
|
ineq2d |
|- ( X e. _V -> ( A i^i ( `' R " { X } ) ) = ( A i^i { y | y R X } ) ) |
| 8 |
|
incom |
|- ( A i^i { y | y R X } ) = ( { y | y R X } i^i A ) |
| 9 |
7 8
|
eqtrdi |
|- ( X e. _V -> ( A i^i ( `' R " { X } ) ) = ( { y | y R X } i^i A ) ) |
| 10 |
|
iniseg |
|- ( X e. _V -> ( `' ( R |` A ) " { X } ) = { y | y ( R |` A ) X } ) |
| 11 |
|
brres |
|- ( X e. _V -> ( y ( R |` A ) X <-> ( y e. A /\ y R X ) ) ) |
| 12 |
11
|
abbidv |
|- ( X e. _V -> { y | y ( R |` A ) X } = { y | ( y e. A /\ y R X ) } ) |
| 13 |
|
df-rab |
|- { y e. A | y R X } = { y | ( y e. A /\ y R X ) } |
| 14 |
12 13
|
eqtr4di |
|- ( X e. _V -> { y | y ( R |` A ) X } = { y e. A | y R X } ) |
| 15 |
10 14
|
eqtrd |
|- ( X e. _V -> ( `' ( R |` A ) " { X } ) = { y e. A | y R X } ) |
| 16 |
15
|
ineq2d |
|- ( X e. _V -> ( A i^i ( `' ( R |` A ) " { X } ) ) = ( A i^i { y e. A | y R X } ) ) |
| 17 |
5 9 16
|
3eqtr4a |
|- ( X e. _V -> ( A i^i ( `' R " { X } ) ) = ( A i^i ( `' ( R |` A ) " { X } ) ) ) |
| 18 |
|
df-pred |
|- Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) ) |
| 19 |
|
df-pred |
|- Pred ( ( R |` A ) , A , X ) = ( A i^i ( `' ( R |` A ) " { X } ) ) |
| 20 |
17 18 19
|
3eqtr4g |
|- ( X e. _V -> Pred ( R , A , X ) = Pred ( ( R |` A ) , A , X ) ) |
| 21 |
|
predprc |
|- ( -. X e. _V -> Pred ( R , A , X ) = (/) ) |
| 22 |
|
predprc |
|- ( -. X e. _V -> Pred ( ( R |` A ) , A , X ) = (/) ) |
| 23 |
21 22
|
eqtr4d |
|- ( -. X e. _V -> Pred ( R , A , X ) = Pred ( ( R |` A ) , A , X ) ) |
| 24 |
20 23
|
pm2.61i |
|- Pred ( R , A , X ) = Pred ( ( R |` A ) , A , X ) |