Metamath Proof Explorer


Theorem predres

Description: Predecessor class is unaffected by restriction to the base class. (Contributed by Scott Fenton, 25-Nov-2024)

Ref Expression
Assertion predres Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( ( 𝑅𝐴 ) , 𝐴 , 𝑋 )

Proof

Step Hyp Ref Expression
1 ssrab2 { 𝑦𝐴𝑦 𝑅 𝑋 } ⊆ 𝐴
2 sseqin2 ( { 𝑦𝐴𝑦 𝑅 𝑋 } ⊆ 𝐴 ↔ ( 𝐴 ∩ { 𝑦𝐴𝑦 𝑅 𝑋 } ) = { 𝑦𝐴𝑦 𝑅 𝑋 } )
3 1 2 mpbi ( 𝐴 ∩ { 𝑦𝐴𝑦 𝑅 𝑋 } ) = { 𝑦𝐴𝑦 𝑅 𝑋 }
4 dfrab2 { 𝑦𝐴𝑦 𝑅 𝑋 } = ( { 𝑦𝑦 𝑅 𝑋 } ∩ 𝐴 )
5 3 4 eqtr2i ( { 𝑦𝑦 𝑅 𝑋 } ∩ 𝐴 ) = ( 𝐴 ∩ { 𝑦𝐴𝑦 𝑅 𝑋 } )
6 iniseg ( 𝑋 ∈ V → ( 𝑅 “ { 𝑋 } ) = { 𝑦𝑦 𝑅 𝑋 } )
7 6 ineq2d ( 𝑋 ∈ V → ( 𝐴 ∩ ( 𝑅 “ { 𝑋 } ) ) = ( 𝐴 ∩ { 𝑦𝑦 𝑅 𝑋 } ) )
8 incom ( 𝐴 ∩ { 𝑦𝑦 𝑅 𝑋 } ) = ( { 𝑦𝑦 𝑅 𝑋 } ∩ 𝐴 )
9 7 8 eqtrdi ( 𝑋 ∈ V → ( 𝐴 ∩ ( 𝑅 “ { 𝑋 } ) ) = ( { 𝑦𝑦 𝑅 𝑋 } ∩ 𝐴 ) )
10 iniseg ( 𝑋 ∈ V → ( ( 𝑅𝐴 ) “ { 𝑋 } ) = { 𝑦𝑦 ( 𝑅𝐴 ) 𝑋 } )
11 brres ( 𝑋 ∈ V → ( 𝑦 ( 𝑅𝐴 ) 𝑋 ↔ ( 𝑦𝐴𝑦 𝑅 𝑋 ) ) )
12 11 abbidv ( 𝑋 ∈ V → { 𝑦𝑦 ( 𝑅𝐴 ) 𝑋 } = { 𝑦 ∣ ( 𝑦𝐴𝑦 𝑅 𝑋 ) } )
13 df-rab { 𝑦𝐴𝑦 𝑅 𝑋 } = { 𝑦 ∣ ( 𝑦𝐴𝑦 𝑅 𝑋 ) }
14 12 13 eqtr4di ( 𝑋 ∈ V → { 𝑦𝑦 ( 𝑅𝐴 ) 𝑋 } = { 𝑦𝐴𝑦 𝑅 𝑋 } )
15 10 14 eqtrd ( 𝑋 ∈ V → ( ( 𝑅𝐴 ) “ { 𝑋 } ) = { 𝑦𝐴𝑦 𝑅 𝑋 } )
16 15 ineq2d ( 𝑋 ∈ V → ( 𝐴 ∩ ( ( 𝑅𝐴 ) “ { 𝑋 } ) ) = ( 𝐴 ∩ { 𝑦𝐴𝑦 𝑅 𝑋 } ) )
17 5 9 16 3eqtr4a ( 𝑋 ∈ V → ( 𝐴 ∩ ( 𝑅 “ { 𝑋 } ) ) = ( 𝐴 ∩ ( ( 𝑅𝐴 ) “ { 𝑋 } ) ) )
18 df-pred Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( 𝑅 “ { 𝑋 } ) )
19 df-pred Pred ( ( 𝑅𝐴 ) , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( ( 𝑅𝐴 ) “ { 𝑋 } ) )
20 17 18 19 3eqtr4g ( 𝑋 ∈ V → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( ( 𝑅𝐴 ) , 𝐴 , 𝑋 ) )
21 predprc ( ¬ 𝑋 ∈ V → Pred ( 𝑅 , 𝐴 , 𝑋 ) = ∅ )
22 predprc ( ¬ 𝑋 ∈ V → Pred ( ( 𝑅𝐴 ) , 𝐴 , 𝑋 ) = ∅ )
23 21 22 eqtr4d ( ¬ 𝑋 ∈ V → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( ( 𝑅𝐴 ) , 𝐴 , 𝑋 ) )
24 20 23 pm2.61i Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( ( 𝑅𝐴 ) , 𝐴 , 𝑋 )