Step |
Hyp |
Ref |
Expression |
1 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } ⊆ 𝐴 |
2 |
|
sseqin2 |
⊢ ( { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } ⊆ 𝐴 ↔ ( 𝐴 ∩ { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } ) = { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } ) |
3 |
1 2
|
mpbi |
⊢ ( 𝐴 ∩ { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } ) = { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } |
4 |
|
dfrab2 |
⊢ { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } = ( { 𝑦 ∣ 𝑦 𝑅 𝑋 } ∩ 𝐴 ) |
5 |
3 4
|
eqtr2i |
⊢ ( { 𝑦 ∣ 𝑦 𝑅 𝑋 } ∩ 𝐴 ) = ( 𝐴 ∩ { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } ) |
6 |
|
iniseg |
⊢ ( 𝑋 ∈ V → ( ◡ 𝑅 “ { 𝑋 } ) = { 𝑦 ∣ 𝑦 𝑅 𝑋 } ) |
7 |
6
|
ineq2d |
⊢ ( 𝑋 ∈ V → ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( 𝐴 ∩ { 𝑦 ∣ 𝑦 𝑅 𝑋 } ) ) |
8 |
|
incom |
⊢ ( 𝐴 ∩ { 𝑦 ∣ 𝑦 𝑅 𝑋 } ) = ( { 𝑦 ∣ 𝑦 𝑅 𝑋 } ∩ 𝐴 ) |
9 |
7 8
|
eqtrdi |
⊢ ( 𝑋 ∈ V → ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( { 𝑦 ∣ 𝑦 𝑅 𝑋 } ∩ 𝐴 ) ) |
10 |
|
iniseg |
⊢ ( 𝑋 ∈ V → ( ◡ ( 𝑅 ↾ 𝐴 ) “ { 𝑋 } ) = { 𝑦 ∣ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 } ) |
11 |
|
brres |
⊢ ( 𝑋 ∈ V → ( 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑋 ) ) ) |
12 |
11
|
abbidv |
⊢ ( 𝑋 ∈ V → { 𝑦 ∣ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑋 ) } ) |
13 |
|
df-rab |
⊢ { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑋 ) } |
14 |
12 13
|
eqtr4di |
⊢ ( 𝑋 ∈ V → { 𝑦 ∣ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 } = { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } ) |
15 |
10 14
|
eqtrd |
⊢ ( 𝑋 ∈ V → ( ◡ ( 𝑅 ↾ 𝐴 ) “ { 𝑋 } ) = { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } ) |
16 |
15
|
ineq2d |
⊢ ( 𝑋 ∈ V → ( 𝐴 ∩ ( ◡ ( 𝑅 ↾ 𝐴 ) “ { 𝑋 } ) ) = ( 𝐴 ∩ { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } ) ) |
17 |
5 9 16
|
3eqtr4a |
⊢ ( 𝑋 ∈ V → ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( 𝐴 ∩ ( ◡ ( 𝑅 ↾ 𝐴 ) “ { 𝑋 } ) ) ) |
18 |
|
df-pred |
⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) |
19 |
|
df-pred |
⊢ Pred ( ( 𝑅 ↾ 𝐴 ) , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( ◡ ( 𝑅 ↾ 𝐴 ) “ { 𝑋 } ) ) |
20 |
17 18 19
|
3eqtr4g |
⊢ ( 𝑋 ∈ V → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( ( 𝑅 ↾ 𝐴 ) , 𝐴 , 𝑋 ) ) |
21 |
|
predprc |
⊢ ( ¬ 𝑋 ∈ V → Pred ( 𝑅 , 𝐴 , 𝑋 ) = ∅ ) |
22 |
|
predprc |
⊢ ( ¬ 𝑋 ∈ V → Pred ( ( 𝑅 ↾ 𝐴 ) , 𝐴 , 𝑋 ) = ∅ ) |
23 |
21 22
|
eqtr4d |
⊢ ( ¬ 𝑋 ∈ V → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( ( 𝑅 ↾ 𝐴 ) , 𝐴 , 𝑋 ) ) |
24 |
20 23
|
pm2.61i |
⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( ( 𝑅 ↾ 𝐴 ) , 𝐴 , 𝑋 ) |