| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-pred |
|- Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) ) |
| 2 |
|
snprc |
|- ( -. X e. _V <-> { X } = (/) ) |
| 3 |
2
|
biimpi |
|- ( -. X e. _V -> { X } = (/) ) |
| 4 |
3
|
imaeq2d |
|- ( -. X e. _V -> ( `' R " { X } ) = ( `' R " (/) ) ) |
| 5 |
|
ima0 |
|- ( `' R " (/) ) = (/) |
| 6 |
4 5
|
eqtrdi |
|- ( -. X e. _V -> ( `' R " { X } ) = (/) ) |
| 7 |
6
|
ineq2d |
|- ( -. X e. _V -> ( A i^i ( `' R " { X } ) ) = ( A i^i (/) ) ) |
| 8 |
|
in0 |
|- ( A i^i (/) ) = (/) |
| 9 |
7 8
|
eqtrdi |
|- ( -. X e. _V -> ( A i^i ( `' R " { X } ) ) = (/) ) |
| 10 |
1 9
|
eqtrid |
|- ( -. X e. _V -> Pred ( R , A , X ) = (/) ) |