| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1onn |
|- 1o e. _om |
| 2 |
|
1on |
|- 1o e. On |
| 3 |
2
|
onirri |
|- -. 1o e. 1o |
| 4 |
|
eldif |
|- ( 1o e. ( _om \ 1o ) <-> ( 1o e. _om /\ -. 1o e. 1o ) ) |
| 5 |
1 3 4
|
mpbir2an |
|- 1o e. ( _om \ 1o ) |
| 6 |
|
vex |
|- x e. _V |
| 7 |
|
vex |
|- y e. _V |
| 8 |
6 7
|
ifex |
|- if ( m = (/) , x , y ) e. _V |
| 9 |
|
eqid |
|- ( m e. suc 1o |-> if ( m = (/) , x , y ) ) = ( m e. suc 1o |-> if ( m = (/) , x , y ) ) |
| 10 |
8 9
|
fnmpti |
|- ( m e. suc 1o |-> if ( m = (/) , x , y ) ) Fn suc 1o |
| 11 |
|
eqid |
|- x = x |
| 12 |
|
eqid |
|- y = y |
| 13 |
11 12
|
pm3.2i |
|- ( x = x /\ y = y ) |
| 14 |
|
1oex |
|- 1o e. _V |
| 15 |
14
|
sucex |
|- suc 1o e. _V |
| 16 |
15
|
mptex |
|- ( m e. suc 1o |-> if ( m = (/) , x , y ) ) e. _V |
| 17 |
|
fneq1 |
|- ( f = ( m e. suc 1o |-> if ( m = (/) , x , y ) ) -> ( f Fn suc 1o <-> ( m e. suc 1o |-> if ( m = (/) , x , y ) ) Fn suc 1o ) ) |
| 18 |
|
fveq1 |
|- ( f = ( m e. suc 1o |-> if ( m = (/) , x , y ) ) -> ( f ` (/) ) = ( ( m e. suc 1o |-> if ( m = (/) , x , y ) ) ` (/) ) ) |
| 19 |
2
|
onordi |
|- Ord 1o |
| 20 |
|
0elsuc |
|- ( Ord 1o -> (/) e. suc 1o ) |
| 21 |
19 20
|
ax-mp |
|- (/) e. suc 1o |
| 22 |
|
iftrue |
|- ( m = (/) -> if ( m = (/) , x , y ) = x ) |
| 23 |
22 9 6
|
fvmpt |
|- ( (/) e. suc 1o -> ( ( m e. suc 1o |-> if ( m = (/) , x , y ) ) ` (/) ) = x ) |
| 24 |
21 23
|
ax-mp |
|- ( ( m e. suc 1o |-> if ( m = (/) , x , y ) ) ` (/) ) = x |
| 25 |
18 24
|
eqtrdi |
|- ( f = ( m e. suc 1o |-> if ( m = (/) , x , y ) ) -> ( f ` (/) ) = x ) |
| 26 |
25
|
eqeq1d |
|- ( f = ( m e. suc 1o |-> if ( m = (/) , x , y ) ) -> ( ( f ` (/) ) = x <-> x = x ) ) |
| 27 |
|
fveq1 |
|- ( f = ( m e. suc 1o |-> if ( m = (/) , x , y ) ) -> ( f ` 1o ) = ( ( m e. suc 1o |-> if ( m = (/) , x , y ) ) ` 1o ) ) |
| 28 |
14
|
sucid |
|- 1o e. suc 1o |
| 29 |
|
eqeq1 |
|- ( m = 1o -> ( m = (/) <-> 1o = (/) ) ) |
| 30 |
29
|
ifbid |
|- ( m = 1o -> if ( m = (/) , x , y ) = if ( 1o = (/) , x , y ) ) |
| 31 |
|
1n0 |
|- 1o =/= (/) |
| 32 |
31
|
neii |
|- -. 1o = (/) |
| 33 |
32
|
iffalsei |
|- if ( 1o = (/) , x , y ) = y |
| 34 |
33 7
|
eqeltri |
|- if ( 1o = (/) , x , y ) e. _V |
| 35 |
30 9 34
|
fvmpt |
|- ( 1o e. suc 1o -> ( ( m e. suc 1o |-> if ( m = (/) , x , y ) ) ` 1o ) = if ( 1o = (/) , x , y ) ) |
| 36 |
28 35
|
ax-mp |
|- ( ( m e. suc 1o |-> if ( m = (/) , x , y ) ) ` 1o ) = if ( 1o = (/) , x , y ) |
| 37 |
36 33
|
eqtri |
|- ( ( m e. suc 1o |-> if ( m = (/) , x , y ) ) ` 1o ) = y |
| 38 |
27 37
|
eqtrdi |
|- ( f = ( m e. suc 1o |-> if ( m = (/) , x , y ) ) -> ( f ` 1o ) = y ) |
| 39 |
38
|
eqeq1d |
|- ( f = ( m e. suc 1o |-> if ( m = (/) , x , y ) ) -> ( ( f ` 1o ) = y <-> y = y ) ) |
| 40 |
26 39
|
anbi12d |
|- ( f = ( m e. suc 1o |-> if ( m = (/) , x , y ) ) -> ( ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) <-> ( x = x /\ y = y ) ) ) |
| 41 |
25 38
|
breq12d |
|- ( f = ( m e. suc 1o |-> if ( m = (/) , x , y ) ) -> ( ( f ` (/) ) R ( f ` 1o ) <-> x R y ) ) |
| 42 |
17 40 41
|
3anbi123d |
|- ( f = ( m e. suc 1o |-> if ( m = (/) , x , y ) ) -> ( ( f Fn suc 1o /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) <-> ( ( m e. suc 1o |-> if ( m = (/) , x , y ) ) Fn suc 1o /\ ( x = x /\ y = y ) /\ x R y ) ) ) |
| 43 |
16 42
|
spcev |
|- ( ( ( m e. suc 1o |-> if ( m = (/) , x , y ) ) Fn suc 1o /\ ( x = x /\ y = y ) /\ x R y ) -> E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) ) |
| 44 |
10 13 43
|
mp3an12 |
|- ( x R y -> E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) ) |
| 45 |
|
suceq |
|- ( n = 1o -> suc n = suc 1o ) |
| 46 |
45
|
fneq2d |
|- ( n = 1o -> ( f Fn suc n <-> f Fn suc 1o ) ) |
| 47 |
|
fveqeq2 |
|- ( n = 1o -> ( ( f ` n ) = y <-> ( f ` 1o ) = y ) ) |
| 48 |
47
|
anbi2d |
|- ( n = 1o -> ( ( ( f ` (/) ) = x /\ ( f ` n ) = y ) <-> ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) ) ) |
| 49 |
|
raleq |
|- ( n = 1o -> ( A. m e. n ( f ` m ) R ( f ` suc m ) <-> A. m e. 1o ( f ` m ) R ( f ` suc m ) ) ) |
| 50 |
|
df1o2 |
|- 1o = { (/) } |
| 51 |
50
|
raleqi |
|- ( A. m e. 1o ( f ` m ) R ( f ` suc m ) <-> A. m e. { (/) } ( f ` m ) R ( f ` suc m ) ) |
| 52 |
|
0ex |
|- (/) e. _V |
| 53 |
|
fveq2 |
|- ( m = (/) -> ( f ` m ) = ( f ` (/) ) ) |
| 54 |
|
suceq |
|- ( m = (/) -> suc m = suc (/) ) |
| 55 |
|
df-1o |
|- 1o = suc (/) |
| 56 |
54 55
|
eqtr4di |
|- ( m = (/) -> suc m = 1o ) |
| 57 |
56
|
fveq2d |
|- ( m = (/) -> ( f ` suc m ) = ( f ` 1o ) ) |
| 58 |
53 57
|
breq12d |
|- ( m = (/) -> ( ( f ` m ) R ( f ` suc m ) <-> ( f ` (/) ) R ( f ` 1o ) ) ) |
| 59 |
52 58
|
ralsn |
|- ( A. m e. { (/) } ( f ` m ) R ( f ` suc m ) <-> ( f ` (/) ) R ( f ` 1o ) ) |
| 60 |
51 59
|
bitri |
|- ( A. m e. 1o ( f ` m ) R ( f ` suc m ) <-> ( f ` (/) ) R ( f ` 1o ) ) |
| 61 |
49 60
|
bitrdi |
|- ( n = 1o -> ( A. m e. n ( f ` m ) R ( f ` suc m ) <-> ( f ` (/) ) R ( f ` 1o ) ) ) |
| 62 |
46 48 61
|
3anbi123d |
|- ( n = 1o -> ( ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) <-> ( f Fn suc 1o /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) ) ) |
| 63 |
62
|
exbidv |
|- ( n = 1o -> ( E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) <-> E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) ) ) |
| 64 |
63
|
rspcev |
|- ( ( 1o e. ( _om \ 1o ) /\ E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) ) -> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) ) |
| 65 |
5 44 64
|
sylancr |
|- ( x R y -> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) ) |
| 66 |
|
df-br |
|- ( x R y <-> <. x , y >. e. R ) |
| 67 |
|
brttrcl |
|- ( x t++ R y <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) ) |
| 68 |
|
df-br |
|- ( x t++ R y <-> <. x , y >. e. t++ R ) |
| 69 |
67 68
|
bitr3i |
|- ( E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) <-> <. x , y >. e. t++ R ) |
| 70 |
65 66 69
|
3imtr3i |
|- ( <. x , y >. e. R -> <. x , y >. e. t++ R ) |
| 71 |
70
|
gen2 |
|- A. x A. y ( <. x , y >. e. R -> <. x , y >. e. t++ R ) |
| 72 |
|
ssrel |
|- ( Rel R -> ( R C_ t++ R <-> A. x A. y ( <. x , y >. e. R -> <. x , y >. e. t++ R ) ) ) |
| 73 |
71 72
|
mpbiri |
|- ( Rel R -> R C_ t++ R ) |