Step |
Hyp |
Ref |
Expression |
1 |
|
1onn |
⊢ 1o ∈ ω |
2 |
|
1on |
⊢ 1o ∈ On |
3 |
2
|
onirri |
⊢ ¬ 1o ∈ 1o |
4 |
|
eldif |
⊢ ( 1o ∈ ( ω ∖ 1o ) ↔ ( 1o ∈ ω ∧ ¬ 1o ∈ 1o ) ) |
5 |
1 3 4
|
mpbir2an |
⊢ 1o ∈ ( ω ∖ 1o ) |
6 |
|
vex |
⊢ 𝑥 ∈ V |
7 |
|
vex |
⊢ 𝑦 ∈ V |
8 |
6 7
|
ifex |
⊢ if ( 𝑚 = ∅ , 𝑥 , 𝑦 ) ∈ V |
9 |
|
eqid |
⊢ ( 𝑚 ∈ suc 1o ↦ if ( 𝑚 = ∅ , 𝑥 , 𝑦 ) ) = ( 𝑚 ∈ suc 1o ↦ if ( 𝑚 = ∅ , 𝑥 , 𝑦 ) ) |
10 |
8 9
|
fnmpti |
⊢ ( 𝑚 ∈ suc 1o ↦ if ( 𝑚 = ∅ , 𝑥 , 𝑦 ) ) Fn suc 1o |
11 |
|
eqid |
⊢ 𝑥 = 𝑥 |
12 |
|
eqid |
⊢ 𝑦 = 𝑦 |
13 |
11 12
|
pm3.2i |
⊢ ( 𝑥 = 𝑥 ∧ 𝑦 = 𝑦 ) |
14 |
|
1oex |
⊢ 1o ∈ V |
15 |
14
|
sucex |
⊢ suc 1o ∈ V |
16 |
15
|
mptex |
⊢ ( 𝑚 ∈ suc 1o ↦ if ( 𝑚 = ∅ , 𝑥 , 𝑦 ) ) ∈ V |
17 |
|
fneq1 |
⊢ ( 𝑓 = ( 𝑚 ∈ suc 1o ↦ if ( 𝑚 = ∅ , 𝑥 , 𝑦 ) ) → ( 𝑓 Fn suc 1o ↔ ( 𝑚 ∈ suc 1o ↦ if ( 𝑚 = ∅ , 𝑥 , 𝑦 ) ) Fn suc 1o ) ) |
18 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑚 ∈ suc 1o ↦ if ( 𝑚 = ∅ , 𝑥 , 𝑦 ) ) → ( 𝑓 ‘ ∅ ) = ( ( 𝑚 ∈ suc 1o ↦ if ( 𝑚 = ∅ , 𝑥 , 𝑦 ) ) ‘ ∅ ) ) |
19 |
2
|
onordi |
⊢ Ord 1o |
20 |
|
0elsuc |
⊢ ( Ord 1o → ∅ ∈ suc 1o ) |
21 |
19 20
|
ax-mp |
⊢ ∅ ∈ suc 1o |
22 |
|
iftrue |
⊢ ( 𝑚 = ∅ → if ( 𝑚 = ∅ , 𝑥 , 𝑦 ) = 𝑥 ) |
23 |
22 9 6
|
fvmpt |
⊢ ( ∅ ∈ suc 1o → ( ( 𝑚 ∈ suc 1o ↦ if ( 𝑚 = ∅ , 𝑥 , 𝑦 ) ) ‘ ∅ ) = 𝑥 ) |
24 |
21 23
|
ax-mp |
⊢ ( ( 𝑚 ∈ suc 1o ↦ if ( 𝑚 = ∅ , 𝑥 , 𝑦 ) ) ‘ ∅ ) = 𝑥 |
25 |
18 24
|
eqtrdi |
⊢ ( 𝑓 = ( 𝑚 ∈ suc 1o ↦ if ( 𝑚 = ∅ , 𝑥 , 𝑦 ) ) → ( 𝑓 ‘ ∅ ) = 𝑥 ) |
26 |
25
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑚 ∈ suc 1o ↦ if ( 𝑚 = ∅ , 𝑥 , 𝑦 ) ) → ( ( 𝑓 ‘ ∅ ) = 𝑥 ↔ 𝑥 = 𝑥 ) ) |
27 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑚 ∈ suc 1o ↦ if ( 𝑚 = ∅ , 𝑥 , 𝑦 ) ) → ( 𝑓 ‘ 1o ) = ( ( 𝑚 ∈ suc 1o ↦ if ( 𝑚 = ∅ , 𝑥 , 𝑦 ) ) ‘ 1o ) ) |
28 |
14
|
sucid |
⊢ 1o ∈ suc 1o |
29 |
|
eqeq1 |
⊢ ( 𝑚 = 1o → ( 𝑚 = ∅ ↔ 1o = ∅ ) ) |
30 |
29
|
ifbid |
⊢ ( 𝑚 = 1o → if ( 𝑚 = ∅ , 𝑥 , 𝑦 ) = if ( 1o = ∅ , 𝑥 , 𝑦 ) ) |
31 |
|
1n0 |
⊢ 1o ≠ ∅ |
32 |
31
|
neii |
⊢ ¬ 1o = ∅ |
33 |
32
|
iffalsei |
⊢ if ( 1o = ∅ , 𝑥 , 𝑦 ) = 𝑦 |
34 |
33 7
|
eqeltri |
⊢ if ( 1o = ∅ , 𝑥 , 𝑦 ) ∈ V |
35 |
30 9 34
|
fvmpt |
⊢ ( 1o ∈ suc 1o → ( ( 𝑚 ∈ suc 1o ↦ if ( 𝑚 = ∅ , 𝑥 , 𝑦 ) ) ‘ 1o ) = if ( 1o = ∅ , 𝑥 , 𝑦 ) ) |
36 |
28 35
|
ax-mp |
⊢ ( ( 𝑚 ∈ suc 1o ↦ if ( 𝑚 = ∅ , 𝑥 , 𝑦 ) ) ‘ 1o ) = if ( 1o = ∅ , 𝑥 , 𝑦 ) |
37 |
36 33
|
eqtri |
⊢ ( ( 𝑚 ∈ suc 1o ↦ if ( 𝑚 = ∅ , 𝑥 , 𝑦 ) ) ‘ 1o ) = 𝑦 |
38 |
27 37
|
eqtrdi |
⊢ ( 𝑓 = ( 𝑚 ∈ suc 1o ↦ if ( 𝑚 = ∅ , 𝑥 , 𝑦 ) ) → ( 𝑓 ‘ 1o ) = 𝑦 ) |
39 |
38
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑚 ∈ suc 1o ↦ if ( 𝑚 = ∅ , 𝑥 , 𝑦 ) ) → ( ( 𝑓 ‘ 1o ) = 𝑦 ↔ 𝑦 = 𝑦 ) ) |
40 |
26 39
|
anbi12d |
⊢ ( 𝑓 = ( 𝑚 ∈ suc 1o ↦ if ( 𝑚 = ∅ , 𝑥 , 𝑦 ) ) → ( ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) ↔ ( 𝑥 = 𝑥 ∧ 𝑦 = 𝑦 ) ) ) |
41 |
25 38
|
breq12d |
⊢ ( 𝑓 = ( 𝑚 ∈ suc 1o ↦ if ( 𝑚 = ∅ , 𝑥 , 𝑦 ) ) → ( ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ↔ 𝑥 𝑅 𝑦 ) ) |
42 |
17 40 41
|
3anbi123d |
⊢ ( 𝑓 = ( 𝑚 ∈ suc 1o ↦ if ( 𝑚 = ∅ , 𝑥 , 𝑦 ) ) → ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) ∧ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) ↔ ( ( 𝑚 ∈ suc 1o ↦ if ( 𝑚 = ∅ , 𝑥 , 𝑦 ) ) Fn suc 1o ∧ ( 𝑥 = 𝑥 ∧ 𝑦 = 𝑦 ) ∧ 𝑥 𝑅 𝑦 ) ) ) |
43 |
16 42
|
spcev |
⊢ ( ( ( 𝑚 ∈ suc 1o ↦ if ( 𝑚 = ∅ , 𝑥 , 𝑦 ) ) Fn suc 1o ∧ ( 𝑥 = 𝑥 ∧ 𝑦 = 𝑦 ) ∧ 𝑥 𝑅 𝑦 ) → ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) ∧ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) ) |
44 |
10 13 43
|
mp3an12 |
⊢ ( 𝑥 𝑅 𝑦 → ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) ∧ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) ) |
45 |
|
suceq |
⊢ ( 𝑛 = 1o → suc 𝑛 = suc 1o ) |
46 |
45
|
fneq2d |
⊢ ( 𝑛 = 1o → ( 𝑓 Fn suc 𝑛 ↔ 𝑓 Fn suc 1o ) ) |
47 |
|
fveqeq2 |
⊢ ( 𝑛 = 1o → ( ( 𝑓 ‘ 𝑛 ) = 𝑦 ↔ ( 𝑓 ‘ 1o ) = 𝑦 ) ) |
48 |
47
|
anbi2d |
⊢ ( 𝑛 = 1o → ( ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) ) ) |
49 |
|
raleq |
⊢ ( 𝑛 = 1o → ( ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ↔ ∀ 𝑚 ∈ 1o ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ) ) |
50 |
|
df1o2 |
⊢ 1o = { ∅ } |
51 |
50
|
raleqi |
⊢ ( ∀ 𝑚 ∈ 1o ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ↔ ∀ 𝑚 ∈ { ∅ } ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ) |
52 |
|
0ex |
⊢ ∅ ∈ V |
53 |
|
fveq2 |
⊢ ( 𝑚 = ∅ → ( 𝑓 ‘ 𝑚 ) = ( 𝑓 ‘ ∅ ) ) |
54 |
|
suceq |
⊢ ( 𝑚 = ∅ → suc 𝑚 = suc ∅ ) |
55 |
|
df-1o |
⊢ 1o = suc ∅ |
56 |
54 55
|
eqtr4di |
⊢ ( 𝑚 = ∅ → suc 𝑚 = 1o ) |
57 |
56
|
fveq2d |
⊢ ( 𝑚 = ∅ → ( 𝑓 ‘ suc 𝑚 ) = ( 𝑓 ‘ 1o ) ) |
58 |
53 57
|
breq12d |
⊢ ( 𝑚 = ∅ → ( ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ↔ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) ) |
59 |
52 58
|
ralsn |
⊢ ( ∀ 𝑚 ∈ { ∅ } ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ↔ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) |
60 |
51 59
|
bitri |
⊢ ( ∀ 𝑚 ∈ 1o ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ↔ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) |
61 |
49 60
|
bitrdi |
⊢ ( 𝑛 = 1o → ( ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ↔ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) ) |
62 |
46 48 61
|
3anbi123d |
⊢ ( 𝑛 = 1o → ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ) ↔ ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) ∧ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) ) ) |
63 |
62
|
exbidv |
⊢ ( 𝑛 = 1o → ( ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) ∧ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) ) ) |
64 |
63
|
rspcev |
⊢ ( ( 1o ∈ ( ω ∖ 1o ) ∧ ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) ∧ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) ) → ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ) ) |
65 |
5 44 64
|
sylancr |
⊢ ( 𝑥 𝑅 𝑦 → ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ) ) |
66 |
|
df-br |
⊢ ( 𝑥 𝑅 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) |
67 |
|
brttrcl |
⊢ ( 𝑥 t++ 𝑅 𝑦 ↔ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ) ) |
68 |
|
df-br |
⊢ ( 𝑥 t++ 𝑅 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ t++ 𝑅 ) |
69 |
67 68
|
bitr3i |
⊢ ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ) ↔ 〈 𝑥 , 𝑦 〉 ∈ t++ 𝑅 ) |
70 |
65 66 69
|
3imtr3i |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 → 〈 𝑥 , 𝑦 〉 ∈ t++ 𝑅 ) |
71 |
70
|
gen2 |
⊢ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 → 〈 𝑥 , 𝑦 〉 ∈ t++ 𝑅 ) |
72 |
|
ssrel |
⊢ ( Rel 𝑅 → ( 𝑅 ⊆ t++ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 → 〈 𝑥 , 𝑦 〉 ∈ t++ 𝑅 ) ) ) |
73 |
71 72
|
mpbiri |
⊢ ( Rel 𝑅 → 𝑅 ⊆ t++ 𝑅 ) |