Metamath Proof Explorer


Theorem ttrcltr

Description: The transitive closure of a class is transitive. (Contributed by Scott Fenton, 17-Oct-2024)

Ref Expression
Assertion ttrcltr ( t++ 𝑅 ∘ t++ 𝑅 ) ⊆ t++ 𝑅

Proof

Step Hyp Ref Expression
1 relco Rel ( t++ 𝑅 ∘ t++ 𝑅 )
2 eldifi ( 𝑛 ∈ ( ω ∖ 1o ) → 𝑛 ∈ ω )
3 eldifi ( 𝑚 ∈ ( ω ∖ 1o ) → 𝑚 ∈ ω )
4 nnacl ( ( 𝑛 ∈ ω ∧ 𝑚 ∈ ω ) → ( 𝑛 +o 𝑚 ) ∈ ω )
5 2 3 4 syl2an ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( 𝑛 +o 𝑚 ) ∈ ω )
6 eldif ( 𝑛 ∈ ( ω ∖ 1o ) ↔ ( 𝑛 ∈ ω ∧ ¬ 𝑛 ∈ 1o ) )
7 1on 1o ∈ On
8 7 onordi Ord 1o
9 nnord ( 𝑛 ∈ ω → Ord 𝑛 )
10 ordtri1 ( ( Ord 1o ∧ Ord 𝑛 ) → ( 1o𝑛 ↔ ¬ 𝑛 ∈ 1o ) )
11 8 9 10 sylancr ( 𝑛 ∈ ω → ( 1o𝑛 ↔ ¬ 𝑛 ∈ 1o ) )
12 11 biimpar ( ( 𝑛 ∈ ω ∧ ¬ 𝑛 ∈ 1o ) → 1o𝑛 )
13 6 12 sylbi ( 𝑛 ∈ ( ω ∖ 1o ) → 1o𝑛 )
14 13 adantr ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → 1o𝑛 )
15 nnaword1 ( ( 𝑛 ∈ ω ∧ 𝑚 ∈ ω ) → 𝑛 ⊆ ( 𝑛 +o 𝑚 ) )
16 2 3 15 syl2an ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → 𝑛 ⊆ ( 𝑛 +o 𝑚 ) )
17 14 16 sstrd ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → 1o ⊆ ( 𝑛 +o 𝑚 ) )
18 nnord ( ( 𝑛 +o 𝑚 ) ∈ ω → Ord ( 𝑛 +o 𝑚 ) )
19 5 18 syl ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → Ord ( 𝑛 +o 𝑚 ) )
20 ordtri1 ( ( Ord 1o ∧ Ord ( 𝑛 +o 𝑚 ) ) → ( 1o ⊆ ( 𝑛 +o 𝑚 ) ↔ ¬ ( 𝑛 +o 𝑚 ) ∈ 1o ) )
21 8 19 20 sylancr ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( 1o ⊆ ( 𝑛 +o 𝑚 ) ↔ ¬ ( 𝑛 +o 𝑚 ) ∈ 1o ) )
22 17 21 mpbid ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ¬ ( 𝑛 +o 𝑚 ) ∈ 1o )
23 5 22 eldifd ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( 𝑛 +o 𝑚 ) ∈ ( ω ∖ 1o ) )
24 0elsuc ( Ord ( 𝑛 +o 𝑚 ) → ∅ ∈ suc ( 𝑛 +o 𝑚 ) )
25 19 24 syl ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ∅ ∈ suc ( 𝑛 +o 𝑚 ) )
26 eleq1 ( 𝑝 = ∅ → ( 𝑝 ∈ suc 𝑛 ↔ ∅ ∈ suc 𝑛 ) )
27 fveq2 ( 𝑝 = ∅ → ( 𝑓𝑝 ) = ( 𝑓 ‘ ∅ ) )
28 eqeq2 ( 𝑝 = ∅ → ( ( 𝑛 +o 𝑞 ) = 𝑝 ↔ ( 𝑛 +o 𝑞 ) = ∅ ) )
29 28 riotabidv ( 𝑝 = ∅ → ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) = ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) )
30 29 fveq2d ( 𝑝 = ∅ → ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) = ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) )
31 26 27 30 ifbieq12d ( 𝑝 = ∅ → if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) = if ( ∅ ∈ suc 𝑛 , ( 𝑓 ‘ ∅ ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) ) )
32 eqid ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) )
33 fvex ( 𝑓 ‘ ∅ ) ∈ V
34 fvex ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) ∈ V
35 33 34 ifex if ( ∅ ∈ suc 𝑛 , ( 𝑓 ‘ ∅ ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) ) ∈ V
36 31 32 35 fvmpt ( ∅ ∈ suc ( 𝑛 +o 𝑚 ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = if ( ∅ ∈ suc 𝑛 , ( 𝑓 ‘ ∅ ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) ) )
37 25 36 syl ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = if ( ∅ ∈ suc 𝑛 , ( 𝑓 ‘ ∅ ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) ) )
38 2 adantr ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → 𝑛 ∈ ω )
39 38 9 syl ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → Ord 𝑛 )
40 0elsuc ( Ord 𝑛 → ∅ ∈ suc 𝑛 )
41 39 40 syl ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ∅ ∈ suc 𝑛 )
42 41 iftrued ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → if ( ∅ ∈ suc 𝑛 , ( 𝑓 ‘ ∅ ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) ) = ( 𝑓 ‘ ∅ ) )
43 37 42 eqtrd ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = ( 𝑓 ‘ ∅ ) )
44 simpl2l ( ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ( 𝑓 ‘ ∅ ) = 𝑥 )
45 43 44 sylan9eq ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = 𝑥 )
46 ovex ( 𝑛 +o 𝑚 ) ∈ V
47 46 sucid ( 𝑛 +o 𝑚 ) ∈ suc ( 𝑛 +o 𝑚 )
48 eleq1 ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( 𝑝 ∈ suc 𝑛 ↔ ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 ) )
49 fveq2 ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( 𝑓𝑝 ) = ( 𝑓 ‘ ( 𝑛 +o 𝑚 ) ) )
50 eqeq2 ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( ( 𝑛 +o 𝑞 ) = 𝑝 ↔ ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) )
51 50 riotabidv ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) = ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) )
52 51 fveq2d ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) = ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) )
53 48 49 52 ifbieq12d ( 𝑝 = ( 𝑛 +o 𝑚 ) → if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) = if ( ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 , ( 𝑓 ‘ ( 𝑛 +o 𝑚 ) ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) ) )
54 fvex ( 𝑓 ‘ ( 𝑛 +o 𝑚 ) ) ∈ V
55 fvex ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) ∈ V
56 54 55 ifex if ( ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 , ( 𝑓 ‘ ( 𝑛 +o 𝑚 ) ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) ) ∈ V
57 53 32 56 fvmpt ( ( 𝑛 +o 𝑚 ) ∈ suc ( 𝑛 +o 𝑚 ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = if ( ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 , ( 𝑓 ‘ ( 𝑛 +o 𝑚 ) ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) ) )
58 47 57 mp1i ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = if ( ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 , ( 𝑓 ‘ ( 𝑛 +o 𝑚 ) ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) ) )
59 df-1o 1o = suc ∅
60 59 difeq2i ( ω ∖ 1o ) = ( ω ∖ suc ∅ )
61 60 eleq2i ( 𝑛 ∈ ( ω ∖ 1o ) ↔ 𝑛 ∈ ( ω ∖ suc ∅ ) )
62 peano1 ∅ ∈ ω
63 eldifsucnn ( ∅ ∈ ω → ( 𝑛 ∈ ( ω ∖ suc ∅ ) ↔ ∃ 𝑥 ∈ ( ω ∖ ∅ ) 𝑛 = suc 𝑥 ) )
64 62 63 ax-mp ( 𝑛 ∈ ( ω ∖ suc ∅ ) ↔ ∃ 𝑥 ∈ ( ω ∖ ∅ ) 𝑛 = suc 𝑥 )
65 dif0 ( ω ∖ ∅ ) = ω
66 65 rexeqi ( ∃ 𝑥 ∈ ( ω ∖ ∅ ) 𝑛 = suc 𝑥 ↔ ∃ 𝑥 ∈ ω 𝑛 = suc 𝑥 )
67 61 64 66 3bitri ( 𝑛 ∈ ( ω ∖ 1o ) ↔ ∃ 𝑥 ∈ ω 𝑛 = suc 𝑥 )
68 60 eleq2i ( 𝑚 ∈ ( ω ∖ 1o ) ↔ 𝑚 ∈ ( ω ∖ suc ∅ ) )
69 eldifsucnn ( ∅ ∈ ω → ( 𝑚 ∈ ( ω ∖ suc ∅ ) ↔ ∃ 𝑦 ∈ ( ω ∖ ∅ ) 𝑚 = suc 𝑦 ) )
70 62 69 ax-mp ( 𝑚 ∈ ( ω ∖ suc ∅ ) ↔ ∃ 𝑦 ∈ ( ω ∖ ∅ ) 𝑚 = suc 𝑦 )
71 65 rexeqi ( ∃ 𝑦 ∈ ( ω ∖ ∅ ) 𝑚 = suc 𝑦 ↔ ∃ 𝑦 ∈ ω 𝑚 = suc 𝑦 )
72 68 70 71 3bitri ( 𝑚 ∈ ( ω ∖ 1o ) ↔ ∃ 𝑦 ∈ ω 𝑚 = suc 𝑦 )
73 67 72 anbi12i ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ↔ ( ∃ 𝑥 ∈ ω 𝑛 = suc 𝑥 ∧ ∃ 𝑦 ∈ ω 𝑚 = suc 𝑦 ) )
74 reeanv ( ∃ 𝑥 ∈ ω ∃ 𝑦 ∈ ω ( 𝑛 = suc 𝑥𝑚 = suc 𝑦 ) ↔ ( ∃ 𝑥 ∈ ω 𝑛 = suc 𝑥 ∧ ∃ 𝑦 ∈ ω 𝑚 = suc 𝑦 ) )
75 73 74 bitr4i ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ↔ ∃ 𝑥 ∈ ω ∃ 𝑦 ∈ ω ( 𝑛 = suc 𝑥𝑚 = suc 𝑦 ) )
76 peano2 ( 𝑥 ∈ ω → suc 𝑥 ∈ ω )
77 nnaword1 ( ( suc 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → suc 𝑥 ⊆ ( suc 𝑥 +o 𝑦 ) )
78 76 77 sylan ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → suc 𝑥 ⊆ ( suc 𝑥 +o 𝑦 ) )
79 76 adantr ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → suc 𝑥 ∈ ω )
80 nnord ( suc 𝑥 ∈ ω → Ord suc 𝑥 )
81 79 80 syl ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → Ord suc 𝑥 )
82 nnacl ( ( suc 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝑥 +o 𝑦 ) ∈ ω )
83 76 82 sylan ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝑥 +o 𝑦 ) ∈ ω )
84 nnord ( ( suc 𝑥 +o 𝑦 ) ∈ ω → Ord ( suc 𝑥 +o 𝑦 ) )
85 83 84 syl ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → Ord ( suc 𝑥 +o 𝑦 ) )
86 ordsucsssuc ( ( Ord suc 𝑥 ∧ Ord ( suc 𝑥 +o 𝑦 ) ) → ( suc 𝑥 ⊆ ( suc 𝑥 +o 𝑦 ) ↔ suc suc 𝑥 ⊆ suc ( suc 𝑥 +o 𝑦 ) ) )
87 81 85 86 syl2anc ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝑥 ⊆ ( suc 𝑥 +o 𝑦 ) ↔ suc suc 𝑥 ⊆ suc ( suc 𝑥 +o 𝑦 ) ) )
88 78 87 mpbid ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → suc suc 𝑥 ⊆ suc ( suc 𝑥 +o 𝑦 ) )
89 nnasuc ( ( suc 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝑥 +o suc 𝑦 ) = suc ( suc 𝑥 +o 𝑦 ) )
90 76 89 sylan ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝑥 +o suc 𝑦 ) = suc ( suc 𝑥 +o 𝑦 ) )
91 88 90 sseqtrrd ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → suc suc 𝑥 ⊆ ( suc 𝑥 +o suc 𝑦 ) )
92 peano2 ( suc 𝑥 ∈ ω → suc suc 𝑥 ∈ ω )
93 79 92 syl ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → suc suc 𝑥 ∈ ω )
94 nnord ( suc suc 𝑥 ∈ ω → Ord suc suc 𝑥 )
95 93 94 syl ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → Ord suc suc 𝑥 )
96 peano2 ( 𝑦 ∈ ω → suc 𝑦 ∈ ω )
97 nnacl ( ( suc 𝑥 ∈ ω ∧ suc 𝑦 ∈ ω ) → ( suc 𝑥 +o suc 𝑦 ) ∈ ω )
98 76 96 97 syl2an ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝑥 +o suc 𝑦 ) ∈ ω )
99 nnord ( ( suc 𝑥 +o suc 𝑦 ) ∈ ω → Ord ( suc 𝑥 +o suc 𝑦 ) )
100 98 99 syl ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → Ord ( suc 𝑥 +o suc 𝑦 ) )
101 ordtri1 ( ( Ord suc suc 𝑥 ∧ Ord ( suc 𝑥 +o suc 𝑦 ) ) → ( suc suc 𝑥 ⊆ ( suc 𝑥 +o suc 𝑦 ) ↔ ¬ ( suc 𝑥 +o suc 𝑦 ) ∈ suc suc 𝑥 ) )
102 95 100 101 syl2anc ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc suc 𝑥 ⊆ ( suc 𝑥 +o suc 𝑦 ) ↔ ¬ ( suc 𝑥 +o suc 𝑦 ) ∈ suc suc 𝑥 ) )
103 91 102 mpbid ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ¬ ( suc 𝑥 +o suc 𝑦 ) ∈ suc suc 𝑥 )
104 oveq12 ( ( 𝑛 = suc 𝑥𝑚 = suc 𝑦 ) → ( 𝑛 +o 𝑚 ) = ( suc 𝑥 +o suc 𝑦 ) )
105 suceq ( 𝑛 = suc 𝑥 → suc 𝑛 = suc suc 𝑥 )
106 105 adantr ( ( 𝑛 = suc 𝑥𝑚 = suc 𝑦 ) → suc 𝑛 = suc suc 𝑥 )
107 104 106 eleq12d ( ( 𝑛 = suc 𝑥𝑚 = suc 𝑦 ) → ( ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 ↔ ( suc 𝑥 +o suc 𝑦 ) ∈ suc suc 𝑥 ) )
108 107 notbid ( ( 𝑛 = suc 𝑥𝑚 = suc 𝑦 ) → ( ¬ ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 ↔ ¬ ( suc 𝑥 +o suc 𝑦 ) ∈ suc suc 𝑥 ) )
109 103 108 syl5ibrcom ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝑛 = suc 𝑥𝑚 = suc 𝑦 ) → ¬ ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 ) )
110 109 rexlimivv ( ∃ 𝑥 ∈ ω ∃ 𝑦 ∈ ω ( 𝑛 = suc 𝑥𝑚 = suc 𝑦 ) → ¬ ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 )
111 75 110 sylbi ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ¬ ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 )
112 111 iffalsed ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → if ( ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 , ( 𝑓 ‘ ( 𝑛 +o 𝑚 ) ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) ) = ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) )
113 3 adantl ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → 𝑚 ∈ ω )
114 38 adantr ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ 𝑞 ∈ ω ) → 𝑛 ∈ ω )
115 simpr ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ 𝑞 ∈ ω ) → 𝑞 ∈ ω )
116 113 adantr ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ 𝑞 ∈ ω ) → 𝑚 ∈ ω )
117 nnacan ( ( 𝑛 ∈ ω ∧ 𝑞 ∈ ω ∧ 𝑚 ∈ ω ) → ( ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ↔ 𝑞 = 𝑚 ) )
118 114 115 116 117 syl3anc ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ 𝑞 ∈ ω ) → ( ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ↔ 𝑞 = 𝑚 ) )
119 113 118 riota5 ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) = 𝑚 )
120 119 fveq2d ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) = ( 𝑔𝑚 ) )
121 58 112 120 3eqtrd ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = ( 𝑔𝑚 ) )
122 simpr2r ( ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ( 𝑔𝑚 ) = 𝑦 )
123 121 122 sylan9eq ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 )
124 simprl3 ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) )
125 fveq2 ( 𝑎 = 𝑐 → ( 𝑓𝑎 ) = ( 𝑓𝑐 ) )
126 suceq ( 𝑎 = 𝑐 → suc 𝑎 = suc 𝑐 )
127 126 fveq2d ( 𝑎 = 𝑐 → ( 𝑓 ‘ suc 𝑎 ) = ( 𝑓 ‘ suc 𝑐 ) )
128 125 127 breq12d ( 𝑎 = 𝑐 → ( ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓𝑐 ) 𝑅 ( 𝑓 ‘ suc 𝑐 ) ) )
129 128 rspcv ( 𝑐𝑛 → ( ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) → ( 𝑓𝑐 ) 𝑅 ( 𝑓 ‘ suc 𝑐 ) ) )
130 124 129 mpan9 ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐𝑛 ) → ( 𝑓𝑐 ) 𝑅 ( 𝑓 ‘ suc 𝑐 ) )
131 elelsuc ( 𝑐𝑛𝑐 ∈ suc 𝑛 )
132 131 adantl ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐𝑛 ) → 𝑐 ∈ suc 𝑛 )
133 132 iftrued ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐𝑛 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓𝑐 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) = ( 𝑓𝑐 ) )
134 ordsucelsuc ( Ord 𝑛 → ( 𝑐𝑛 ↔ suc 𝑐 ∈ suc 𝑛 ) )
135 39 134 syl ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( 𝑐𝑛 ↔ suc 𝑐 ∈ suc 𝑛 ) )
136 135 adantr ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑐𝑛 ↔ suc 𝑐 ∈ suc 𝑛 ) )
137 136 biimpa ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐𝑛 ) → suc 𝑐 ∈ suc 𝑛 )
138 137 iftrued ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐𝑛 ) → if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) = ( 𝑓 ‘ suc 𝑐 ) )
139 130 133 138 3brtr4d ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐𝑛 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓𝑐 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) )
140 139 adantlr ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑐𝑛 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓𝑐 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) )
141 39 adantr ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → Ord 𝑛 )
142 5 adantr ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑛 +o 𝑚 ) ∈ ω )
143 elnn ( ( 𝑐 ∈ ( 𝑛 +o 𝑚 ) ∧ ( 𝑛 +o 𝑚 ) ∈ ω ) → 𝑐 ∈ ω )
144 143 ancoms ( ( ( 𝑛 +o 𝑚 ) ∈ ω ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → 𝑐 ∈ ω )
145 142 144 sylan ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → 𝑐 ∈ ω )
146 nnord ( 𝑐 ∈ ω → Ord 𝑐 )
147 145 146 syl ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → Ord 𝑐 )
148 ordtri3or ( ( Ord 𝑛 ∧ Ord 𝑐 ) → ( 𝑛𝑐𝑛 = 𝑐𝑐𝑛 ) )
149 141 147 148 syl2an2r ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( 𝑛𝑐𝑛 = 𝑐𝑐𝑛 ) )
150 3orel3 ( ¬ 𝑐𝑛 → ( ( 𝑛𝑐𝑛 = 𝑐𝑐𝑛 ) → ( 𝑛𝑐𝑛 = 𝑐 ) ) )
151 149 150 syl5com ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( ¬ 𝑐𝑛 → ( 𝑛𝑐𝑛 = 𝑐 ) ) )
152 fveq2 ( 𝑏 = ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( 𝑔𝑏 ) = ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) )
153 suceq ( 𝑏 = ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → suc 𝑏 = suc ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) )
154 153 fveq2d ( 𝑏 = ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( 𝑔 ‘ suc 𝑏 ) = ( 𝑔 ‘ suc ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) )
155 152 154 breq12d ( 𝑏 = ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ↔ ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) 𝑅 ( 𝑔 ‘ suc ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) )
156 simprr3 ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) )
157 156 adantr ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) )
158 157 adantr ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) )
159 ordelss ( ( Ord 𝑐𝑛𝑐 ) → 𝑛𝑐 )
160 147 159 sylan ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → 𝑛𝑐 )
161 38 adantr ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → 𝑛 ∈ ω )
162 161 adantr ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → 𝑛 ∈ ω )
163 145 adantr ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → 𝑐 ∈ ω )
164 nnawordex ( ( 𝑛 ∈ ω ∧ 𝑐 ∈ ω ) → ( 𝑛𝑐 ↔ ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) )
165 162 163 164 syl2an2r ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → ( 𝑛𝑐 ↔ ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) )
166 160 165 mpbid ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 )
167 oveq2 ( 𝑞 = 𝑝 → ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑝 ) )
168 167 eqeq1d ( 𝑞 = 𝑝 → ( ( 𝑛 +o 𝑞 ) = 𝑐 ↔ ( 𝑛 +o 𝑝 ) = 𝑐 ) )
169 168 cbvrexvw ( ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ↔ ∃ 𝑝 ∈ ω ( 𝑛 +o 𝑝 ) = 𝑐 )
170 166 169 sylib ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → ∃ 𝑝 ∈ ω ( 𝑛 +o 𝑝 ) = 𝑐 )
171 simprr ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → ( 𝑛 +o 𝑝 ) = 𝑐 )
172 simpllr ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → 𝑐 ∈ ( 𝑛 +o 𝑚 ) )
173 171 172 eqeltrd ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → ( 𝑛 +o 𝑝 ) ∈ ( 𝑛 +o 𝑚 ) )
174 simprl ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → 𝑝 ∈ ω )
175 3 ad4antlr ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → 𝑚 ∈ ω )
176 175 adantr ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → 𝑚 ∈ ω )
177 162 adantr ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → 𝑛 ∈ ω )
178 177 adantr ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → 𝑛 ∈ ω )
179 nnaord ( ( 𝑝 ∈ ω ∧ 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) → ( 𝑝𝑚 ↔ ( 𝑛 +o 𝑝 ) ∈ ( 𝑛 +o 𝑚 ) ) )
180 174 176 178 179 syl3anc ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → ( 𝑝𝑚 ↔ ( 𝑛 +o 𝑝 ) ∈ ( 𝑛 +o 𝑚 ) ) )
181 173 180 mpbird ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → 𝑝𝑚 )
182 170 181 171 reximssdv ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → ∃ 𝑝𝑚 ( 𝑛 +o 𝑝 ) = 𝑐 )
183 elnn ( ( 𝑝𝑚𝑚 ∈ ω ) → 𝑝 ∈ ω )
184 183 ancoms ( ( 𝑚 ∈ ω ∧ 𝑝𝑚 ) → 𝑝 ∈ ω )
185 175 184 sylan ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) ∧ 𝑝𝑚 ) → 𝑝 ∈ ω )
186 nnasmo ( 𝑛 ∈ ω → ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 )
187 177 186 syl ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 )
188 reu5 ( ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ↔ ( ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ∧ ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) )
189 166 187 188 sylanbrc ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 )
190 189 adantr ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) ∧ 𝑝𝑚 ) → ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 )
191 168 riota2 ( ( 𝑝 ∈ ω ∧ ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( ( 𝑛 +o 𝑝 ) = 𝑐 ↔ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) = 𝑝 ) )
192 185 190 191 syl2anc ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) ∧ 𝑝𝑚 ) → ( ( 𝑛 +o 𝑝 ) = 𝑐 ↔ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) = 𝑝 ) )
193 eqcom ( ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) = 𝑝𝑝 = ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) )
194 192 193 bitrdi ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) ∧ 𝑝𝑚 ) → ( ( 𝑛 +o 𝑝 ) = 𝑐𝑝 = ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) )
195 194 rexbidva ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → ( ∃ 𝑝𝑚 ( 𝑛 +o 𝑝 ) = 𝑐 ↔ ∃ 𝑝𝑚 𝑝 = ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) )
196 182 195 mpbid ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → ∃ 𝑝𝑚 𝑝 = ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) )
197 risset ( ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ 𝑚 ↔ ∃ 𝑝𝑚 𝑝 = ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) )
198 196 197 sylibr ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ 𝑚 )
199 155 158 198 rspcdva ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) 𝑅 ( 𝑔 ‘ suc ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) )
200 simpr ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → 𝑛𝑐 )
201 vex 𝑛 ∈ V
202 147 adantr ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → Ord 𝑐 )
203 ordelsuc ( ( 𝑛 ∈ V ∧ Ord 𝑐 ) → ( 𝑛𝑐 ↔ suc 𝑛𝑐 ) )
204 201 202 203 sylancr ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → ( 𝑛𝑐 ↔ suc 𝑛𝑐 ) )
205 peano2 ( 𝑛 ∈ ω → suc 𝑛 ∈ ω )
206 38 205 syl ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → suc 𝑛 ∈ ω )
207 nnord ( suc 𝑛 ∈ ω → Ord suc 𝑛 )
208 206 207 syl ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → Ord suc 𝑛 )
209 208 adantr ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → Ord suc 𝑛 )
210 209 adantr ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → Ord suc 𝑛 )
211 ordtri1 ( ( Ord suc 𝑛 ∧ Ord 𝑐 ) → ( suc 𝑛𝑐 ↔ ¬ 𝑐 ∈ suc 𝑛 ) )
212 210 202 211 syl2an2r ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → ( suc 𝑛𝑐 ↔ ¬ 𝑐 ∈ suc 𝑛 ) )
213 204 212 bitrd ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → ( 𝑛𝑐 ↔ ¬ 𝑐 ∈ suc 𝑛 ) )
214 200 213 mpbid ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → ¬ 𝑐 ∈ suc 𝑛 )
215 214 iffalsed ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓𝑐 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) = ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) )
216 riotacl ( ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 → ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω )
217 189 216 syl ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω )
218 nnasuc ( ( 𝑛 ∈ ω ∧ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω ) → ( 𝑛 +o suc ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc ( 𝑛 +o ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) )
219 162 217 218 syl2an2r ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → ( 𝑛 +o suc ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc ( 𝑛 +o ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) )
220 eqidd ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) = ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) )
221 nfriota1 𝑞 ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 )
222 nfcv 𝑞 𝑛
223 nfcv 𝑞 +o
224 222 223 221 nfov 𝑞 ( 𝑛 +o ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) )
225 224 nfeq1 𝑞 ( 𝑛 +o ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = 𝑐
226 oveq2 ( 𝑞 = ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( 𝑛 +o 𝑞 ) = ( 𝑛 +o ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) )
227 226 eqeq1d ( 𝑞 = ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( ( 𝑛 +o 𝑞 ) = 𝑐 ↔ ( 𝑛 +o ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = 𝑐 ) )
228 221 225 227 riota2f ( ( ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω ∧ ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( ( 𝑛 +o ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = 𝑐 ↔ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) = ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) )
229 217 189 228 syl2anc ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → ( ( 𝑛 +o ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = 𝑐 ↔ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) = ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) )
230 220 229 mpbird ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → ( 𝑛 +o ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = 𝑐 )
231 suceq ( ( 𝑛 +o ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = 𝑐 → suc ( 𝑛 +o ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc 𝑐 )
232 230 231 syl ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → suc ( 𝑛 +o ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc 𝑐 )
233 219 232 eqtrd ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → ( 𝑛 +o suc ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc 𝑐 )
234 peano2 ( ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω → suc ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω )
235 217 234 syl ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → suc ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω )
236 peano2 ( 𝑝 ∈ ω → suc 𝑝 ∈ ω )
237 nnasuc ( ( 𝑛 ∈ ω ∧ 𝑝 ∈ ω ) → ( 𝑛 +o suc 𝑝 ) = suc ( 𝑛 +o 𝑝 ) )
238 177 237 sylan ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) ∧ 𝑝 ∈ ω ) → ( 𝑛 +o suc 𝑝 ) = suc ( 𝑛 +o 𝑝 ) )
239 oveq2 ( 𝑞 = suc 𝑝 → ( 𝑛 +o 𝑞 ) = ( 𝑛 +o suc 𝑝 ) )
240 239 eqeq1d ( 𝑞 = suc 𝑝 → ( ( 𝑛 +o 𝑞 ) = suc ( 𝑛 +o 𝑝 ) ↔ ( 𝑛 +o suc 𝑝 ) = suc ( 𝑛 +o 𝑝 ) ) )
241 240 rspcev ( ( suc 𝑝 ∈ ω ∧ ( 𝑛 +o suc 𝑝 ) = suc ( 𝑛 +o 𝑝 ) ) → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc ( 𝑛 +o 𝑝 ) )
242 236 238 241 syl2an2 ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) ∧ 𝑝 ∈ ω ) → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc ( 𝑛 +o 𝑝 ) )
243 suceq ( ( 𝑛 +o 𝑝 ) = 𝑐 → suc ( 𝑛 +o 𝑝 ) = suc 𝑐 )
244 243 eqeq2d ( ( 𝑛 +o 𝑝 ) = 𝑐 → ( ( 𝑛 +o 𝑞 ) = suc ( 𝑛 +o 𝑝 ) ↔ ( 𝑛 +o 𝑞 ) = suc 𝑐 ) )
245 244 rexbidv ( ( 𝑛 +o 𝑝 ) = 𝑐 → ( ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc ( 𝑛 +o 𝑝 ) ↔ ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) )
246 242 245 syl5ibcom ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) ∧ 𝑝 ∈ ω ) → ( ( 𝑛 +o 𝑝 ) = 𝑐 → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) )
247 246 rexlimdva ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → ( ∃ 𝑝 ∈ ω ( 𝑛 +o 𝑝 ) = 𝑐 → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) )
248 170 247 mpd ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 )
249 nnasmo ( 𝑛 ∈ ω → ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 )
250 177 249 syl ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 )
251 reu5 ( ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ↔ ( ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ∧ ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) )
252 248 250 251 sylanbrc ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 )
253 221 nfsuc 𝑞 suc ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 )
254 222 223 253 nfov 𝑞 ( 𝑛 +o suc ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) )
255 254 nfeq1 𝑞 ( 𝑛 +o suc ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc 𝑐
256 oveq2 ( 𝑞 = suc ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( 𝑛 +o 𝑞 ) = ( 𝑛 +o suc ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) )
257 256 eqeq1d ( 𝑞 = suc ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( ( 𝑛 +o 𝑞 ) = suc 𝑐 ↔ ( 𝑛 +o suc ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc 𝑐 ) )
258 253 255 257 riota2f ( ( suc ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω ∧ ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) → ( ( 𝑛 +o suc ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc 𝑐 ↔ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) = suc ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) )
259 235 252 258 syl2anc ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → ( ( 𝑛 +o suc ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc 𝑐 ↔ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) = suc ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) )
260 233 259 mpbid ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) = suc ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) )
261 260 fveq2d ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) = ( 𝑔 ‘ suc ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) )
262 199 215 261 3brtr4d ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛𝑐 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓𝑐 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) )
263 262 ex ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( 𝑛𝑐 → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓𝑐 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) )
264 fveq2 ( 𝑏 = ∅ → ( 𝑔𝑏 ) = ( 𝑔 ‘ ∅ ) )
265 suceq ( 𝑏 = ∅ → suc 𝑏 = suc ∅ )
266 265 59 eqtr4di ( 𝑏 = ∅ → suc 𝑏 = 1o )
267 266 fveq2d ( 𝑏 = ∅ → ( 𝑔 ‘ suc 𝑏 ) = ( 𝑔 ‘ 1o ) )
268 264 267 breq12d ( 𝑏 = ∅ → ( ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ↔ ( 𝑔 ‘ ∅ ) 𝑅 ( 𝑔 ‘ 1o ) ) )
269 eldif ( 𝑚 ∈ ( ω ∖ 1o ) ↔ ( 𝑚 ∈ ω ∧ ¬ 𝑚 ∈ 1o ) )
270 nnord ( 𝑚 ∈ ω → Ord 𝑚 )
271 ordtri1 ( ( Ord 1o ∧ Ord 𝑚 ) → ( 1o𝑚 ↔ ¬ 𝑚 ∈ 1o ) )
272 8 270 271 sylancr ( 𝑚 ∈ ω → ( 1o𝑚 ↔ ¬ 𝑚 ∈ 1o ) )
273 272 biimpar ( ( 𝑚 ∈ ω ∧ ¬ 𝑚 ∈ 1o ) → 1o𝑚 )
274 269 273 sylbi ( 𝑚 ∈ ( ω ∖ 1o ) → 1o𝑚 )
275 274 adantl ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → 1o𝑚 )
276 59 275 eqsstrrid ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → suc ∅ ⊆ 𝑚 )
277 0ex ∅ ∈ V
278 113 270 syl ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → Ord 𝑚 )
279 ordelsuc ( ( ∅ ∈ V ∧ Ord 𝑚 ) → ( ∅ ∈ 𝑚 ↔ suc ∅ ⊆ 𝑚 ) )
280 277 278 279 sylancr ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ∅ ∈ 𝑚 ↔ suc ∅ ⊆ 𝑚 ) )
281 276 280 mpbird ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ∅ ∈ 𝑚 )
282 281 adantr ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ∅ ∈ 𝑚 )
283 268 156 282 rspcdva ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑔 ‘ ∅ ) 𝑅 ( 𝑔 ‘ 1o ) )
284 simpl2r ( ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ( 𝑓𝑛 ) = 𝑧 )
285 simpr2l ( ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ( 𝑔 ‘ ∅ ) = 𝑧 )
286 284 285 eqtr4d ( ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ( 𝑓𝑛 ) = ( 𝑔 ‘ ∅ ) )
287 286 adantl ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑓𝑛 ) = ( 𝑔 ‘ ∅ ) )
288 nnon ( 𝑛 ∈ ω → 𝑛 ∈ On )
289 38 288 syl ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → 𝑛 ∈ On )
290 oa1suc ( 𝑛 ∈ On → ( 𝑛 +o 1o ) = suc 𝑛 )
291 289 290 syl ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( 𝑛 +o 1o ) = suc 𝑛 )
292 1onn 1o ∈ ω
293 oveq2 ( 𝑞 = 1o → ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 1o ) )
294 293 eqeq1d ( 𝑞 = 1o → ( ( 𝑛 +o 𝑞 ) = suc 𝑛 ↔ ( 𝑛 +o 1o ) = suc 𝑛 ) )
295 294 rspcev ( ( 1o ∈ ω ∧ ( 𝑛 +o 1o ) = suc 𝑛 ) → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 )
296 292 291 295 sylancr ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 )
297 nnasmo ( 𝑛 ∈ ω → ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 )
298 38 297 syl ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 )
299 reu5 ( ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ↔ ( ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ∧ ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) )
300 296 298 299 sylanbrc ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 )
301 294 riota2 ( ( 1o ∈ ω ∧ ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) → ( ( 𝑛 +o 1o ) = suc 𝑛 ↔ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) = 1o ) )
302 292 300 301 sylancr ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ( 𝑛 +o 1o ) = suc 𝑛 ↔ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) = 1o ) )
303 291 302 mpbid ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) = 1o )
304 303 adantr ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) = 1o )
305 304 fveq2d ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) ) = ( 𝑔 ‘ 1o ) )
306 283 287 305 3brtr4d ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑓𝑛 ) 𝑅 ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) ) )
307 201 sucid 𝑛 ∈ suc 𝑛
308 307 iftruei if ( 𝑛 ∈ suc 𝑛 , ( 𝑓𝑛 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) = ( 𝑓𝑛 )
309 eleq1 ( 𝑛 = 𝑐 → ( 𝑛 ∈ suc 𝑛𝑐 ∈ suc 𝑛 ) )
310 fveq2 ( 𝑛 = 𝑐 → ( 𝑓𝑛 ) = ( 𝑓𝑐 ) )
311 309 310 ifbieq1d ( 𝑛 = 𝑐 → if ( 𝑛 ∈ suc 𝑛 , ( 𝑓𝑛 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) = if ( 𝑐 ∈ suc 𝑛 , ( 𝑓𝑐 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) )
312 308 311 eqtr3id ( 𝑛 = 𝑐 → ( 𝑓𝑛 ) = if ( 𝑐 ∈ suc 𝑛 , ( 𝑓𝑐 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) )
313 suceq ( 𝑛 = 𝑐 → suc 𝑛 = suc 𝑐 )
314 313 eqeq2d ( 𝑛 = 𝑐 → ( ( 𝑛 +o 𝑞 ) = suc 𝑛 ↔ ( 𝑛 +o 𝑞 ) = suc 𝑐 ) )
315 314 riotabidv ( 𝑛 = 𝑐 → ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) = ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) )
316 315 fveq2d ( 𝑛 = 𝑐 → ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) ) = ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) )
317 312 316 breq12d ( 𝑛 = 𝑐 → ( ( 𝑓𝑛 ) 𝑅 ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) ) ↔ if ( 𝑐 ∈ suc 𝑛 , ( 𝑓𝑐 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) )
318 306 317 syl5ibcom ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑛 = 𝑐 → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓𝑐 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) )
319 318 adantr ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( 𝑛 = 𝑐 → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓𝑐 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) )
320 263 319 jaod ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( ( 𝑛𝑐𝑛 = 𝑐 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓𝑐 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) )
321 151 320 syld ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( ¬ 𝑐𝑛 → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓𝑐 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) )
322 321 imp ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ ¬ 𝑐𝑛 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓𝑐 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) )
323 135 notbid ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ¬ 𝑐𝑛 ↔ ¬ suc 𝑐 ∈ suc 𝑛 ) )
324 323 adantr ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( ¬ 𝑐𝑛 ↔ ¬ suc 𝑐 ∈ suc 𝑛 ) )
325 324 adantr ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( ¬ 𝑐𝑛 ↔ ¬ suc 𝑐 ∈ suc 𝑛 ) )
326 325 biimpa ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ ¬ 𝑐𝑛 ) → ¬ suc 𝑐 ∈ suc 𝑛 )
327 326 iffalsed ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ ¬ 𝑐𝑛 ) → if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) = ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) )
328 322 327 breqtrrd ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ ¬ 𝑐𝑛 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓𝑐 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) )
329 140 328 pm2.61dan ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓𝑐 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) )
330 elelsuc ( 𝑐 ∈ ( 𝑛 +o 𝑚 ) → 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) )
331 330 adantl ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) )
332 eleq1 ( 𝑝 = 𝑐 → ( 𝑝 ∈ suc 𝑛𝑐 ∈ suc 𝑛 ) )
333 fveq2 ( 𝑝 = 𝑐 → ( 𝑓𝑝 ) = ( 𝑓𝑐 ) )
334 eqeq2 ( 𝑝 = 𝑐 → ( ( 𝑛 +o 𝑞 ) = 𝑝 ↔ ( 𝑛 +o 𝑞 ) = 𝑐 ) )
335 334 riotabidv ( 𝑝 = 𝑐 → ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) = ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) )
336 335 fveq2d ( 𝑝 = 𝑐 → ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) = ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) )
337 332 333 336 ifbieq12d ( 𝑝 = 𝑐 → if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) = if ( 𝑐 ∈ suc 𝑛 , ( 𝑓𝑐 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) )
338 fvex ( 𝑓𝑐 ) ∈ V
339 fvex ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ∈ V
340 338 339 ifex if ( 𝑐 ∈ suc 𝑛 , ( 𝑓𝑐 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) ∈ V
341 337 32 340 fvmpt ( 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) = if ( 𝑐 ∈ suc 𝑛 , ( 𝑓𝑐 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) )
342 331 341 syl ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) = if ( 𝑐 ∈ suc 𝑛 , ( 𝑓𝑐 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) )
343 ordsucelsuc ( Ord ( 𝑛 +o 𝑚 ) → ( 𝑐 ∈ ( 𝑛 +o 𝑚 ) ↔ suc 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) ) )
344 19 343 syl ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( 𝑐 ∈ ( 𝑛 +o 𝑚 ) ↔ suc 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) ) )
345 344 adantr ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑐 ∈ ( 𝑛 +o 𝑚 ) ↔ suc 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) ) )
346 345 biimpa ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → suc 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) )
347 eleq1 ( 𝑝 = suc 𝑐 → ( 𝑝 ∈ suc 𝑛 ↔ suc 𝑐 ∈ suc 𝑛 ) )
348 fveq2 ( 𝑝 = suc 𝑐 → ( 𝑓𝑝 ) = ( 𝑓 ‘ suc 𝑐 ) )
349 eqeq2 ( 𝑝 = suc 𝑐 → ( ( 𝑛 +o 𝑞 ) = 𝑝 ↔ ( 𝑛 +o 𝑞 ) = suc 𝑐 ) )
350 349 riotabidv ( 𝑝 = suc 𝑐 → ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) = ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) )
351 350 fveq2d ( 𝑝 = suc 𝑐 → ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) = ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) )
352 347 348 351 ifbieq12d ( 𝑝 = suc 𝑐 → if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) = if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) )
353 fvex ( 𝑓 ‘ suc 𝑐 ) ∈ V
354 fvex ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ∈ V
355 353 354 ifex if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ∈ V
356 352 32 355 fvmpt ( suc 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) = if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) )
357 346 356 syl ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) = if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) )
358 329 342 357 3brtr4d ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) )
359 358 ralrimiva ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) )
360 fvex ( 𝑓𝑝 ) ∈ V
361 fvex ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ∈ V
362 360 361 ifex if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ∈ V
363 362 32 fnmpti ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) Fn suc ( 𝑛 +o 𝑚 )
364 46 sucex suc ( 𝑛 +o 𝑚 ) ∈ V
365 364 mptex ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ∈ V
366 fneq1 ( = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( Fn suc ( 𝑛 +o 𝑚 ) ↔ ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) Fn suc ( 𝑛 +o 𝑚 ) ) )
367 fveq1 ( = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ‘ ∅ ) = ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) )
368 367 eqeq1d ( = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ( ‘ ∅ ) = 𝑥 ↔ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = 𝑥 ) )
369 fveq1 ( = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ‘ ( 𝑛 +o 𝑚 ) ) = ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) )
370 369 eqeq1d ( = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ( ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ↔ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) )
371 368 370 anbi12d ( = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ( ( ‘ ∅ ) = 𝑥 ∧ ( ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ↔ ( ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = 𝑥 ∧ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ) )
372 fveq1 ( = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( 𝑐 ) = ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) )
373 fveq1 ( = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ‘ suc 𝑐 ) = ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) )
374 372 373 breq12d ( = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ( 𝑐 ) 𝑅 ( ‘ suc 𝑐 ) ↔ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) ) )
375 374 ralbidv ( = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( 𝑐 ) 𝑅 ( ‘ suc 𝑐 ) ↔ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) ) )
376 366 371 375 3anbi123d ( = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ( Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ‘ ∅ ) = 𝑥 ∧ ( ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( 𝑐 ) 𝑅 ( ‘ suc 𝑐 ) ) ↔ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = 𝑥 ∧ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) ) ) )
377 365 376 spcev ( ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = 𝑥 ∧ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) ) → ∃ ( Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ‘ ∅ ) = 𝑥 ∧ ( ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( 𝑐 ) 𝑅 ( ‘ suc 𝑐 ) ) )
378 363 377 mp3an1 ( ( ( ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = 𝑥 ∧ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓𝑝 ) , ( 𝑔 ‘ ( 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) ) → ∃ ( Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ‘ ∅ ) = 𝑥 ∧ ( ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( 𝑐 ) 𝑅 ( ‘ suc 𝑐 ) ) )
379 45 123 359 378 syl21anc ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ∃ ( Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ‘ ∅ ) = 𝑥 ∧ ( ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( 𝑐 ) 𝑅 ( ‘ suc 𝑐 ) ) )
380 suceq ( 𝑝 = ( 𝑛 +o 𝑚 ) → suc 𝑝 = suc ( 𝑛 +o 𝑚 ) )
381 380 fneq2d ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( Fn suc 𝑝 Fn suc ( 𝑛 +o 𝑚 ) ) )
382 fveqeq2 ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( ( 𝑝 ) = 𝑦 ↔ ( ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) )
383 382 anbi2d ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( ( ( ‘ ∅ ) = 𝑥 ∧ ( 𝑝 ) = 𝑦 ) ↔ ( ( ‘ ∅ ) = 𝑥 ∧ ( ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ) )
384 raleq ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( ∀ 𝑐𝑝 ( 𝑐 ) 𝑅 ( ‘ suc 𝑐 ) ↔ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( 𝑐 ) 𝑅 ( ‘ suc 𝑐 ) ) )
385 381 383 384 3anbi123d ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( ( Fn suc 𝑝 ∧ ( ( ‘ ∅ ) = 𝑥 ∧ ( 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐𝑝 ( 𝑐 ) 𝑅 ( ‘ suc 𝑐 ) ) ↔ ( Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ‘ ∅ ) = 𝑥 ∧ ( ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( 𝑐 ) 𝑅 ( ‘ suc 𝑐 ) ) ) )
386 385 exbidv ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( ∃ ( Fn suc 𝑝 ∧ ( ( ‘ ∅ ) = 𝑥 ∧ ( 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐𝑝 ( 𝑐 ) 𝑅 ( ‘ suc 𝑐 ) ) ↔ ∃ ( Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ‘ ∅ ) = 𝑥 ∧ ( ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( 𝑐 ) 𝑅 ( ‘ suc 𝑐 ) ) ) )
387 386 rspcev ( ( ( 𝑛 +o 𝑚 ) ∈ ( ω ∖ 1o ) ∧ ∃ ( Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ‘ ∅ ) = 𝑥 ∧ ( ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( 𝑐 ) 𝑅 ( ‘ suc 𝑐 ) ) ) → ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ( Fn suc 𝑝 ∧ ( ( ‘ ∅ ) = 𝑥 ∧ ( 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐𝑝 ( 𝑐 ) 𝑅 ( ‘ suc 𝑐 ) ) )
388 23 379 387 syl2an2r ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ( Fn suc 𝑝 ∧ ( ( ‘ ∅ ) = 𝑥 ∧ ( 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐𝑝 ( 𝑐 ) 𝑅 ( ‘ suc 𝑐 ) ) )
389 388 ex ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ( Fn suc 𝑝 ∧ ( ( ‘ ∅ ) = 𝑥 ∧ ( 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐𝑝 ( 𝑐 ) 𝑅 ( ‘ suc 𝑐 ) ) ) )
390 389 exlimdvv ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ∃ 𝑓𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ( Fn suc 𝑝 ∧ ( ( ‘ ∅ ) = 𝑥 ∧ ( 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐𝑝 ( 𝑐 ) 𝑅 ( ‘ suc 𝑐 ) ) ) )
391 390 rexlimivv ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑓𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ( Fn suc 𝑝 ∧ ( ( ‘ ∅ ) = 𝑥 ∧ ( 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐𝑝 ( 𝑐 ) 𝑅 ( ‘ suc 𝑐 ) ) )
392 391 exlimiv ( ∃ 𝑧𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑓𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ( Fn suc 𝑝 ∧ ( ( ‘ ∅ ) = 𝑥 ∧ ( 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐𝑝 ( 𝑐 ) 𝑅 ( ‘ suc 𝑐 ) ) )
393 vex 𝑥 ∈ V
394 vex 𝑦 ∈ V
395 393 394 opelco ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( t++ 𝑅 ∘ t++ 𝑅 ) ↔ ∃ 𝑧 ( 𝑥 t++ 𝑅 𝑧𝑧 t++ 𝑅 𝑦 ) )
396 reeanv ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ( ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ∃ 𝑔 ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ↔ ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑔 ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) )
397 eeanv ( ∃ 𝑓𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ∃ 𝑔 ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) )
398 397 2rexbii ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑓𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ↔ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ( ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ∃ 𝑔 ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) )
399 brttrcl ( 𝑥 t++ 𝑅 𝑧 ↔ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) )
400 brttrcl ( 𝑧 t++ 𝑅 𝑦 ↔ ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑔 ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) )
401 399 400 anbi12i ( ( 𝑥 t++ 𝑅 𝑧𝑧 t++ 𝑅 𝑦 ) ↔ ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑔 ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) )
402 396 398 401 3bitr4ri ( ( 𝑥 t++ 𝑅 𝑧𝑧 t++ 𝑅 𝑦 ) ↔ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑓𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) )
403 402 exbii ( ∃ 𝑧 ( 𝑥 t++ 𝑅 𝑧𝑧 t++ 𝑅 𝑦 ) ↔ ∃ 𝑧𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑓𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) )
404 395 403 bitri ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( t++ 𝑅 ∘ t++ 𝑅 ) ↔ ∃ 𝑧𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑓𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔𝑚 ) = 𝑦 ) ∧ ∀ 𝑏𝑚 ( 𝑔𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) )
405 df-br ( 𝑥 t++ 𝑅 𝑦 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ t++ 𝑅 )
406 brttrcl ( 𝑥 t++ 𝑅 𝑦 ↔ ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ( Fn suc 𝑝 ∧ ( ( ‘ ∅ ) = 𝑥 ∧ ( 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐𝑝 ( 𝑐 ) 𝑅 ( ‘ suc 𝑐 ) ) )
407 405 406 bitr3i ( ⟨ 𝑥 , 𝑦 ⟩ ∈ t++ 𝑅 ↔ ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ( Fn suc 𝑝 ∧ ( ( ‘ ∅ ) = 𝑥 ∧ ( 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐𝑝 ( 𝑐 ) 𝑅 ( ‘ suc 𝑐 ) ) )
408 392 404 407 3imtr4i ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( t++ 𝑅 ∘ t++ 𝑅 ) → ⟨ 𝑥 , 𝑦 ⟩ ∈ t++ 𝑅 )
409 1 408 relssi ( t++ 𝑅 ∘ t++ 𝑅 ) ⊆ t++ 𝑅