Step |
Hyp |
Ref |
Expression |
1 |
|
relco |
⊢ Rel ( t++ 𝑅 ∘ t++ 𝑅 ) |
2 |
|
eldifi |
⊢ ( 𝑛 ∈ ( ω ∖ 1o ) → 𝑛 ∈ ω ) |
3 |
|
eldifi |
⊢ ( 𝑚 ∈ ( ω ∖ 1o ) → 𝑚 ∈ ω ) |
4 |
|
nnacl |
⊢ ( ( 𝑛 ∈ ω ∧ 𝑚 ∈ ω ) → ( 𝑛 +o 𝑚 ) ∈ ω ) |
5 |
2 3 4
|
syl2an |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( 𝑛 +o 𝑚 ) ∈ ω ) |
6 |
|
eldif |
⊢ ( 𝑛 ∈ ( ω ∖ 1o ) ↔ ( 𝑛 ∈ ω ∧ ¬ 𝑛 ∈ 1o ) ) |
7 |
|
1on |
⊢ 1o ∈ On |
8 |
7
|
onordi |
⊢ Ord 1o |
9 |
|
nnord |
⊢ ( 𝑛 ∈ ω → Ord 𝑛 ) |
10 |
|
ordtri1 |
⊢ ( ( Ord 1o ∧ Ord 𝑛 ) → ( 1o ⊆ 𝑛 ↔ ¬ 𝑛 ∈ 1o ) ) |
11 |
8 9 10
|
sylancr |
⊢ ( 𝑛 ∈ ω → ( 1o ⊆ 𝑛 ↔ ¬ 𝑛 ∈ 1o ) ) |
12 |
11
|
biimpar |
⊢ ( ( 𝑛 ∈ ω ∧ ¬ 𝑛 ∈ 1o ) → 1o ⊆ 𝑛 ) |
13 |
6 12
|
sylbi |
⊢ ( 𝑛 ∈ ( ω ∖ 1o ) → 1o ⊆ 𝑛 ) |
14 |
13
|
adantr |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → 1o ⊆ 𝑛 ) |
15 |
|
nnaword1 |
⊢ ( ( 𝑛 ∈ ω ∧ 𝑚 ∈ ω ) → 𝑛 ⊆ ( 𝑛 +o 𝑚 ) ) |
16 |
2 3 15
|
syl2an |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → 𝑛 ⊆ ( 𝑛 +o 𝑚 ) ) |
17 |
14 16
|
sstrd |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → 1o ⊆ ( 𝑛 +o 𝑚 ) ) |
18 |
|
nnord |
⊢ ( ( 𝑛 +o 𝑚 ) ∈ ω → Ord ( 𝑛 +o 𝑚 ) ) |
19 |
5 18
|
syl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → Ord ( 𝑛 +o 𝑚 ) ) |
20 |
|
ordtri1 |
⊢ ( ( Ord 1o ∧ Ord ( 𝑛 +o 𝑚 ) ) → ( 1o ⊆ ( 𝑛 +o 𝑚 ) ↔ ¬ ( 𝑛 +o 𝑚 ) ∈ 1o ) ) |
21 |
8 19 20
|
sylancr |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( 1o ⊆ ( 𝑛 +o 𝑚 ) ↔ ¬ ( 𝑛 +o 𝑚 ) ∈ 1o ) ) |
22 |
17 21
|
mpbid |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ¬ ( 𝑛 +o 𝑚 ) ∈ 1o ) |
23 |
5 22
|
eldifd |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( 𝑛 +o 𝑚 ) ∈ ( ω ∖ 1o ) ) |
24 |
|
0elsuc |
⊢ ( Ord ( 𝑛 +o 𝑚 ) → ∅ ∈ suc ( 𝑛 +o 𝑚 ) ) |
25 |
19 24
|
syl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ∅ ∈ suc ( 𝑛 +o 𝑚 ) ) |
26 |
|
eleq1 |
⊢ ( 𝑝 = ∅ → ( 𝑝 ∈ suc 𝑛 ↔ ∅ ∈ suc 𝑛 ) ) |
27 |
|
fveq2 |
⊢ ( 𝑝 = ∅ → ( 𝑓 ‘ 𝑝 ) = ( 𝑓 ‘ ∅ ) ) |
28 |
|
eqeq2 |
⊢ ( 𝑝 = ∅ → ( ( 𝑛 +o 𝑞 ) = 𝑝 ↔ ( 𝑛 +o 𝑞 ) = ∅ ) ) |
29 |
28
|
riotabidv |
⊢ ( 𝑝 = ∅ → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) |
30 |
29
|
fveq2d |
⊢ ( 𝑝 = ∅ → ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) = ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) ) |
31 |
26 27 30
|
ifbieq12d |
⊢ ( 𝑝 = ∅ → if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) = if ( ∅ ∈ suc 𝑛 , ( 𝑓 ‘ ∅ ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) ) ) |
32 |
|
eqid |
⊢ ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) |
33 |
|
fvex |
⊢ ( 𝑓 ‘ ∅ ) ∈ V |
34 |
|
fvex |
⊢ ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) ∈ V |
35 |
33 34
|
ifex |
⊢ if ( ∅ ∈ suc 𝑛 , ( 𝑓 ‘ ∅ ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) ) ∈ V |
36 |
31 32 35
|
fvmpt |
⊢ ( ∅ ∈ suc ( 𝑛 +o 𝑚 ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = if ( ∅ ∈ suc 𝑛 , ( 𝑓 ‘ ∅ ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) ) ) |
37 |
25 36
|
syl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = if ( ∅ ∈ suc 𝑛 , ( 𝑓 ‘ ∅ ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) ) ) |
38 |
2
|
adantr |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → 𝑛 ∈ ω ) |
39 |
38 9
|
syl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → Ord 𝑛 ) |
40 |
|
0elsuc |
⊢ ( Ord 𝑛 → ∅ ∈ suc 𝑛 ) |
41 |
39 40
|
syl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ∅ ∈ suc 𝑛 ) |
42 |
41
|
iftrued |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → if ( ∅ ∈ suc 𝑛 , ( 𝑓 ‘ ∅ ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) ) = ( 𝑓 ‘ ∅ ) ) |
43 |
37 42
|
eqtrd |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = ( 𝑓 ‘ ∅ ) ) |
44 |
|
simpl2l |
⊢ ( ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ( 𝑓 ‘ ∅ ) = 𝑥 ) |
45 |
43 44
|
sylan9eq |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = 𝑥 ) |
46 |
|
ovex |
⊢ ( 𝑛 +o 𝑚 ) ∈ V |
47 |
46
|
sucid |
⊢ ( 𝑛 +o 𝑚 ) ∈ suc ( 𝑛 +o 𝑚 ) |
48 |
|
eleq1 |
⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( 𝑝 ∈ suc 𝑛 ↔ ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 ) ) |
49 |
|
fveq2 |
⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( 𝑓 ‘ 𝑝 ) = ( 𝑓 ‘ ( 𝑛 +o 𝑚 ) ) ) |
50 |
|
eqeq2 |
⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( ( 𝑛 +o 𝑞 ) = 𝑝 ↔ ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) |
51 |
50
|
riotabidv |
⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) |
52 |
51
|
fveq2d |
⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) = ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) ) |
53 |
48 49 52
|
ifbieq12d |
⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) = if ( ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 , ( 𝑓 ‘ ( 𝑛 +o 𝑚 ) ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) ) ) |
54 |
|
fvex |
⊢ ( 𝑓 ‘ ( 𝑛 +o 𝑚 ) ) ∈ V |
55 |
|
fvex |
⊢ ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) ∈ V |
56 |
54 55
|
ifex |
⊢ if ( ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 , ( 𝑓 ‘ ( 𝑛 +o 𝑚 ) ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) ) ∈ V |
57 |
53 32 56
|
fvmpt |
⊢ ( ( 𝑛 +o 𝑚 ) ∈ suc ( 𝑛 +o 𝑚 ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = if ( ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 , ( 𝑓 ‘ ( 𝑛 +o 𝑚 ) ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) ) ) |
58 |
47 57
|
mp1i |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = if ( ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 , ( 𝑓 ‘ ( 𝑛 +o 𝑚 ) ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) ) ) |
59 |
|
df-1o |
⊢ 1o = suc ∅ |
60 |
59
|
difeq2i |
⊢ ( ω ∖ 1o ) = ( ω ∖ suc ∅ ) |
61 |
60
|
eleq2i |
⊢ ( 𝑛 ∈ ( ω ∖ 1o ) ↔ 𝑛 ∈ ( ω ∖ suc ∅ ) ) |
62 |
|
peano1 |
⊢ ∅ ∈ ω |
63 |
|
eldifsucnn |
⊢ ( ∅ ∈ ω → ( 𝑛 ∈ ( ω ∖ suc ∅ ) ↔ ∃ 𝑥 ∈ ( ω ∖ ∅ ) 𝑛 = suc 𝑥 ) ) |
64 |
62 63
|
ax-mp |
⊢ ( 𝑛 ∈ ( ω ∖ suc ∅ ) ↔ ∃ 𝑥 ∈ ( ω ∖ ∅ ) 𝑛 = suc 𝑥 ) |
65 |
|
dif0 |
⊢ ( ω ∖ ∅ ) = ω |
66 |
65
|
rexeqi |
⊢ ( ∃ 𝑥 ∈ ( ω ∖ ∅ ) 𝑛 = suc 𝑥 ↔ ∃ 𝑥 ∈ ω 𝑛 = suc 𝑥 ) |
67 |
61 64 66
|
3bitri |
⊢ ( 𝑛 ∈ ( ω ∖ 1o ) ↔ ∃ 𝑥 ∈ ω 𝑛 = suc 𝑥 ) |
68 |
60
|
eleq2i |
⊢ ( 𝑚 ∈ ( ω ∖ 1o ) ↔ 𝑚 ∈ ( ω ∖ suc ∅ ) ) |
69 |
|
eldifsucnn |
⊢ ( ∅ ∈ ω → ( 𝑚 ∈ ( ω ∖ suc ∅ ) ↔ ∃ 𝑦 ∈ ( ω ∖ ∅ ) 𝑚 = suc 𝑦 ) ) |
70 |
62 69
|
ax-mp |
⊢ ( 𝑚 ∈ ( ω ∖ suc ∅ ) ↔ ∃ 𝑦 ∈ ( ω ∖ ∅ ) 𝑚 = suc 𝑦 ) |
71 |
65
|
rexeqi |
⊢ ( ∃ 𝑦 ∈ ( ω ∖ ∅ ) 𝑚 = suc 𝑦 ↔ ∃ 𝑦 ∈ ω 𝑚 = suc 𝑦 ) |
72 |
68 70 71
|
3bitri |
⊢ ( 𝑚 ∈ ( ω ∖ 1o ) ↔ ∃ 𝑦 ∈ ω 𝑚 = suc 𝑦 ) |
73 |
67 72
|
anbi12i |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ↔ ( ∃ 𝑥 ∈ ω 𝑛 = suc 𝑥 ∧ ∃ 𝑦 ∈ ω 𝑚 = suc 𝑦 ) ) |
74 |
|
reeanv |
⊢ ( ∃ 𝑥 ∈ ω ∃ 𝑦 ∈ ω ( 𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦 ) ↔ ( ∃ 𝑥 ∈ ω 𝑛 = suc 𝑥 ∧ ∃ 𝑦 ∈ ω 𝑚 = suc 𝑦 ) ) |
75 |
73 74
|
bitr4i |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ↔ ∃ 𝑥 ∈ ω ∃ 𝑦 ∈ ω ( 𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦 ) ) |
76 |
|
peano2 |
⊢ ( 𝑥 ∈ ω → suc 𝑥 ∈ ω ) |
77 |
|
nnaword1 |
⊢ ( ( suc 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → suc 𝑥 ⊆ ( suc 𝑥 +o 𝑦 ) ) |
78 |
76 77
|
sylan |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → suc 𝑥 ⊆ ( suc 𝑥 +o 𝑦 ) ) |
79 |
76
|
adantr |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → suc 𝑥 ∈ ω ) |
80 |
|
nnord |
⊢ ( suc 𝑥 ∈ ω → Ord suc 𝑥 ) |
81 |
79 80
|
syl |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → Ord suc 𝑥 ) |
82 |
|
nnacl |
⊢ ( ( suc 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝑥 +o 𝑦 ) ∈ ω ) |
83 |
76 82
|
sylan |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝑥 +o 𝑦 ) ∈ ω ) |
84 |
|
nnord |
⊢ ( ( suc 𝑥 +o 𝑦 ) ∈ ω → Ord ( suc 𝑥 +o 𝑦 ) ) |
85 |
83 84
|
syl |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → Ord ( suc 𝑥 +o 𝑦 ) ) |
86 |
|
ordsucsssuc |
⊢ ( ( Ord suc 𝑥 ∧ Ord ( suc 𝑥 +o 𝑦 ) ) → ( suc 𝑥 ⊆ ( suc 𝑥 +o 𝑦 ) ↔ suc suc 𝑥 ⊆ suc ( suc 𝑥 +o 𝑦 ) ) ) |
87 |
81 85 86
|
syl2anc |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝑥 ⊆ ( suc 𝑥 +o 𝑦 ) ↔ suc suc 𝑥 ⊆ suc ( suc 𝑥 +o 𝑦 ) ) ) |
88 |
78 87
|
mpbid |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → suc suc 𝑥 ⊆ suc ( suc 𝑥 +o 𝑦 ) ) |
89 |
|
nnasuc |
⊢ ( ( suc 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝑥 +o suc 𝑦 ) = suc ( suc 𝑥 +o 𝑦 ) ) |
90 |
76 89
|
sylan |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝑥 +o suc 𝑦 ) = suc ( suc 𝑥 +o 𝑦 ) ) |
91 |
88 90
|
sseqtrrd |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → suc suc 𝑥 ⊆ ( suc 𝑥 +o suc 𝑦 ) ) |
92 |
|
peano2 |
⊢ ( suc 𝑥 ∈ ω → suc suc 𝑥 ∈ ω ) |
93 |
79 92
|
syl |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → suc suc 𝑥 ∈ ω ) |
94 |
|
nnord |
⊢ ( suc suc 𝑥 ∈ ω → Ord suc suc 𝑥 ) |
95 |
93 94
|
syl |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → Ord suc suc 𝑥 ) |
96 |
|
peano2 |
⊢ ( 𝑦 ∈ ω → suc 𝑦 ∈ ω ) |
97 |
|
nnacl |
⊢ ( ( suc 𝑥 ∈ ω ∧ suc 𝑦 ∈ ω ) → ( suc 𝑥 +o suc 𝑦 ) ∈ ω ) |
98 |
76 96 97
|
syl2an |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝑥 +o suc 𝑦 ) ∈ ω ) |
99 |
|
nnord |
⊢ ( ( suc 𝑥 +o suc 𝑦 ) ∈ ω → Ord ( suc 𝑥 +o suc 𝑦 ) ) |
100 |
98 99
|
syl |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → Ord ( suc 𝑥 +o suc 𝑦 ) ) |
101 |
|
ordtri1 |
⊢ ( ( Ord suc suc 𝑥 ∧ Ord ( suc 𝑥 +o suc 𝑦 ) ) → ( suc suc 𝑥 ⊆ ( suc 𝑥 +o suc 𝑦 ) ↔ ¬ ( suc 𝑥 +o suc 𝑦 ) ∈ suc suc 𝑥 ) ) |
102 |
95 100 101
|
syl2anc |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc suc 𝑥 ⊆ ( suc 𝑥 +o suc 𝑦 ) ↔ ¬ ( suc 𝑥 +o suc 𝑦 ) ∈ suc suc 𝑥 ) ) |
103 |
91 102
|
mpbid |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ¬ ( suc 𝑥 +o suc 𝑦 ) ∈ suc suc 𝑥 ) |
104 |
|
oveq12 |
⊢ ( ( 𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦 ) → ( 𝑛 +o 𝑚 ) = ( suc 𝑥 +o suc 𝑦 ) ) |
105 |
|
suceq |
⊢ ( 𝑛 = suc 𝑥 → suc 𝑛 = suc suc 𝑥 ) |
106 |
105
|
adantr |
⊢ ( ( 𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦 ) → suc 𝑛 = suc suc 𝑥 ) |
107 |
104 106
|
eleq12d |
⊢ ( ( 𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦 ) → ( ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 ↔ ( suc 𝑥 +o suc 𝑦 ) ∈ suc suc 𝑥 ) ) |
108 |
107
|
notbid |
⊢ ( ( 𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦 ) → ( ¬ ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 ↔ ¬ ( suc 𝑥 +o suc 𝑦 ) ∈ suc suc 𝑥 ) ) |
109 |
103 108
|
syl5ibrcom |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦 ) → ¬ ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 ) ) |
110 |
109
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ ω ∃ 𝑦 ∈ ω ( 𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦 ) → ¬ ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 ) |
111 |
75 110
|
sylbi |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ¬ ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 ) |
112 |
111
|
iffalsed |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → if ( ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 , ( 𝑓 ‘ ( 𝑛 +o 𝑚 ) ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) ) = ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) ) |
113 |
3
|
adantl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → 𝑚 ∈ ω ) |
114 |
38
|
adantr |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ 𝑞 ∈ ω ) → 𝑛 ∈ ω ) |
115 |
|
simpr |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ 𝑞 ∈ ω ) → 𝑞 ∈ ω ) |
116 |
113
|
adantr |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ 𝑞 ∈ ω ) → 𝑚 ∈ ω ) |
117 |
|
nnacan |
⊢ ( ( 𝑛 ∈ ω ∧ 𝑞 ∈ ω ∧ 𝑚 ∈ ω ) → ( ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ↔ 𝑞 = 𝑚 ) ) |
118 |
114 115 116 117
|
syl3anc |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ 𝑞 ∈ ω ) → ( ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ↔ 𝑞 = 𝑚 ) ) |
119 |
113 118
|
riota5 |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) = 𝑚 ) |
120 |
119
|
fveq2d |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) = ( 𝑔 ‘ 𝑚 ) ) |
121 |
58 112 120
|
3eqtrd |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = ( 𝑔 ‘ 𝑚 ) ) |
122 |
|
simpr2r |
⊢ ( ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ( 𝑔 ‘ 𝑚 ) = 𝑦 ) |
123 |
121 122
|
sylan9eq |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) |
124 |
|
simprl3 |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) |
125 |
|
fveq2 |
⊢ ( 𝑎 = 𝑐 → ( 𝑓 ‘ 𝑎 ) = ( 𝑓 ‘ 𝑐 ) ) |
126 |
|
suceq |
⊢ ( 𝑎 = 𝑐 → suc 𝑎 = suc 𝑐 ) |
127 |
126
|
fveq2d |
⊢ ( 𝑎 = 𝑐 → ( 𝑓 ‘ suc 𝑎 ) = ( 𝑓 ‘ suc 𝑐 ) ) |
128 |
125 127
|
breq12d |
⊢ ( 𝑎 = 𝑐 → ( ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ 𝑐 ) 𝑅 ( 𝑓 ‘ suc 𝑐 ) ) ) |
129 |
128
|
rspcv |
⊢ ( 𝑐 ∈ 𝑛 → ( ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) → ( 𝑓 ‘ 𝑐 ) 𝑅 ( 𝑓 ‘ suc 𝑐 ) ) ) |
130 |
124 129
|
mpan9 |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ 𝑛 ) → ( 𝑓 ‘ 𝑐 ) 𝑅 ( 𝑓 ‘ suc 𝑐 ) ) |
131 |
|
elelsuc |
⊢ ( 𝑐 ∈ 𝑛 → 𝑐 ∈ suc 𝑛 ) |
132 |
131
|
adantl |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ 𝑛 ) → 𝑐 ∈ suc 𝑛 ) |
133 |
132
|
iftrued |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ 𝑛 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) = ( 𝑓 ‘ 𝑐 ) ) |
134 |
|
ordsucelsuc |
⊢ ( Ord 𝑛 → ( 𝑐 ∈ 𝑛 ↔ suc 𝑐 ∈ suc 𝑛 ) ) |
135 |
39 134
|
syl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( 𝑐 ∈ 𝑛 ↔ suc 𝑐 ∈ suc 𝑛 ) ) |
136 |
135
|
adantr |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑐 ∈ 𝑛 ↔ suc 𝑐 ∈ suc 𝑛 ) ) |
137 |
136
|
biimpa |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ 𝑛 ) → suc 𝑐 ∈ suc 𝑛 ) |
138 |
137
|
iftrued |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ 𝑛 ) → if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) = ( 𝑓 ‘ suc 𝑐 ) ) |
139 |
130 133 138
|
3brtr4d |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ 𝑛 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
140 |
139
|
adantlr |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑐 ∈ 𝑛 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
141 |
39
|
adantr |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → Ord 𝑛 ) |
142 |
5
|
adantr |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑛 +o 𝑚 ) ∈ ω ) |
143 |
|
elnn |
⊢ ( ( 𝑐 ∈ ( 𝑛 +o 𝑚 ) ∧ ( 𝑛 +o 𝑚 ) ∈ ω ) → 𝑐 ∈ ω ) |
144 |
143
|
ancoms |
⊢ ( ( ( 𝑛 +o 𝑚 ) ∈ ω ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → 𝑐 ∈ ω ) |
145 |
142 144
|
sylan |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → 𝑐 ∈ ω ) |
146 |
|
nnord |
⊢ ( 𝑐 ∈ ω → Ord 𝑐 ) |
147 |
145 146
|
syl |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → Ord 𝑐 ) |
148 |
|
ordtri3or |
⊢ ( ( Ord 𝑛 ∧ Ord 𝑐 ) → ( 𝑛 ∈ 𝑐 ∨ 𝑛 = 𝑐 ∨ 𝑐 ∈ 𝑛 ) ) |
149 |
141 147 148
|
syl2an2r |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( 𝑛 ∈ 𝑐 ∨ 𝑛 = 𝑐 ∨ 𝑐 ∈ 𝑛 ) ) |
150 |
|
3orel3 |
⊢ ( ¬ 𝑐 ∈ 𝑛 → ( ( 𝑛 ∈ 𝑐 ∨ 𝑛 = 𝑐 ∨ 𝑐 ∈ 𝑛 ) → ( 𝑛 ∈ 𝑐 ∨ 𝑛 = 𝑐 ) ) ) |
151 |
149 150
|
syl5com |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( ¬ 𝑐 ∈ 𝑛 → ( 𝑛 ∈ 𝑐 ∨ 𝑛 = 𝑐 ) ) ) |
152 |
|
fveq2 |
⊢ ( 𝑏 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( 𝑔 ‘ 𝑏 ) = ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
153 |
|
suceq |
⊢ ( 𝑏 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → suc 𝑏 = suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
154 |
153
|
fveq2d |
⊢ ( 𝑏 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( 𝑔 ‘ suc 𝑏 ) = ( 𝑔 ‘ suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
155 |
152 154
|
breq12d |
⊢ ( 𝑏 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ↔ ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) 𝑅 ( 𝑔 ‘ suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) ) |
156 |
|
simprr3 |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) |
157 |
156
|
adantr |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) |
158 |
157
|
adantr |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) |
159 |
|
ordelss |
⊢ ( ( Ord 𝑐 ∧ 𝑛 ∈ 𝑐 ) → 𝑛 ⊆ 𝑐 ) |
160 |
147 159
|
sylan |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → 𝑛 ⊆ 𝑐 ) |
161 |
38
|
adantr |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → 𝑛 ∈ ω ) |
162 |
161
|
adantr |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → 𝑛 ∈ ω ) |
163 |
145
|
adantr |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → 𝑐 ∈ ω ) |
164 |
|
nnawordex |
⊢ ( ( 𝑛 ∈ ω ∧ 𝑐 ∈ ω ) → ( 𝑛 ⊆ 𝑐 ↔ ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
165 |
162 163 164
|
syl2an2r |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( 𝑛 ⊆ 𝑐 ↔ ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
166 |
160 165
|
mpbid |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) |
167 |
|
oveq2 |
⊢ ( 𝑞 = 𝑝 → ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑝 ) ) |
168 |
167
|
eqeq1d |
⊢ ( 𝑞 = 𝑝 → ( ( 𝑛 +o 𝑞 ) = 𝑐 ↔ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) |
169 |
168
|
cbvrexvw |
⊢ ( ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ↔ ∃ 𝑝 ∈ ω ( 𝑛 +o 𝑝 ) = 𝑐 ) |
170 |
166 169
|
sylib |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ∃ 𝑝 ∈ ω ( 𝑛 +o 𝑝 ) = 𝑐 ) |
171 |
|
simprr |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → ( 𝑛 +o 𝑝 ) = 𝑐 ) |
172 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) |
173 |
171 172
|
eqeltrd |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → ( 𝑛 +o 𝑝 ) ∈ ( 𝑛 +o 𝑚 ) ) |
174 |
|
simprl |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → 𝑝 ∈ ω ) |
175 |
3
|
ad4antlr |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → 𝑚 ∈ ω ) |
176 |
175
|
adantr |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → 𝑚 ∈ ω ) |
177 |
162
|
adantr |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → 𝑛 ∈ ω ) |
178 |
177
|
adantr |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → 𝑛 ∈ ω ) |
179 |
|
nnaord |
⊢ ( ( 𝑝 ∈ ω ∧ 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) → ( 𝑝 ∈ 𝑚 ↔ ( 𝑛 +o 𝑝 ) ∈ ( 𝑛 +o 𝑚 ) ) ) |
180 |
174 176 178 179
|
syl3anc |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → ( 𝑝 ∈ 𝑚 ↔ ( 𝑛 +o 𝑝 ) ∈ ( 𝑛 +o 𝑚 ) ) ) |
181 |
173 180
|
mpbird |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → 𝑝 ∈ 𝑚 ) |
182 |
170 181 171
|
reximssdv |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ∃ 𝑝 ∈ 𝑚 ( 𝑛 +o 𝑝 ) = 𝑐 ) |
183 |
|
elnn |
⊢ ( ( 𝑝 ∈ 𝑚 ∧ 𝑚 ∈ ω ) → 𝑝 ∈ ω ) |
184 |
183
|
ancoms |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) → 𝑝 ∈ ω ) |
185 |
175 184
|
sylan |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ 𝑝 ∈ 𝑚 ) → 𝑝 ∈ ω ) |
186 |
|
nnasmo |
⊢ ( 𝑛 ∈ ω → ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) |
187 |
177 186
|
syl |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) |
188 |
|
reu5 |
⊢ ( ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ↔ ( ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ∧ ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
189 |
166 187 188
|
sylanbrc |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) |
190 |
189
|
adantr |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ 𝑝 ∈ 𝑚 ) → ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) |
191 |
168
|
riota2 |
⊢ ( ( 𝑝 ∈ ω ∧ ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( ( 𝑛 +o 𝑝 ) = 𝑐 ↔ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) = 𝑝 ) ) |
192 |
185 190 191
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ 𝑝 ∈ 𝑚 ) → ( ( 𝑛 +o 𝑝 ) = 𝑐 ↔ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) = 𝑝 ) ) |
193 |
|
eqcom |
⊢ ( ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) = 𝑝 ↔ 𝑝 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
194 |
192 193
|
bitrdi |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ 𝑝 ∈ 𝑚 ) → ( ( 𝑛 +o 𝑝 ) = 𝑐 ↔ 𝑝 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
195 |
194
|
rexbidva |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( ∃ 𝑝 ∈ 𝑚 ( 𝑛 +o 𝑝 ) = 𝑐 ↔ ∃ 𝑝 ∈ 𝑚 𝑝 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
196 |
182 195
|
mpbid |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ∃ 𝑝 ∈ 𝑚 𝑝 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
197 |
|
risset |
⊢ ( ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ 𝑚 ↔ ∃ 𝑝 ∈ 𝑚 𝑝 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
198 |
196 197
|
sylibr |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ 𝑚 ) |
199 |
155 158 198
|
rspcdva |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) 𝑅 ( 𝑔 ‘ suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
200 |
|
simpr |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → 𝑛 ∈ 𝑐 ) |
201 |
|
vex |
⊢ 𝑛 ∈ V |
202 |
147
|
adantr |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → Ord 𝑐 ) |
203 |
|
ordelsuc |
⊢ ( ( 𝑛 ∈ V ∧ Ord 𝑐 ) → ( 𝑛 ∈ 𝑐 ↔ suc 𝑛 ⊆ 𝑐 ) ) |
204 |
201 202 203
|
sylancr |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( 𝑛 ∈ 𝑐 ↔ suc 𝑛 ⊆ 𝑐 ) ) |
205 |
|
peano2 |
⊢ ( 𝑛 ∈ ω → suc 𝑛 ∈ ω ) |
206 |
38 205
|
syl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → suc 𝑛 ∈ ω ) |
207 |
|
nnord |
⊢ ( suc 𝑛 ∈ ω → Ord suc 𝑛 ) |
208 |
206 207
|
syl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → Ord suc 𝑛 ) |
209 |
208
|
adantr |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → Ord suc 𝑛 ) |
210 |
209
|
adantr |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → Ord suc 𝑛 ) |
211 |
|
ordtri1 |
⊢ ( ( Ord suc 𝑛 ∧ Ord 𝑐 ) → ( suc 𝑛 ⊆ 𝑐 ↔ ¬ 𝑐 ∈ suc 𝑛 ) ) |
212 |
210 202 211
|
syl2an2r |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( suc 𝑛 ⊆ 𝑐 ↔ ¬ 𝑐 ∈ suc 𝑛 ) ) |
213 |
204 212
|
bitrd |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( 𝑛 ∈ 𝑐 ↔ ¬ 𝑐 ∈ suc 𝑛 ) ) |
214 |
200 213
|
mpbid |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ¬ 𝑐 ∈ suc 𝑛 ) |
215 |
214
|
iffalsed |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) = ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
216 |
|
riotacl |
⊢ ( ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω ) |
217 |
189 216
|
syl |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω ) |
218 |
|
nnasuc |
⊢ ( ( 𝑛 ∈ ω ∧ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω ) → ( 𝑛 +o suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
219 |
162 217 218
|
syl2an2r |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( 𝑛 +o suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
220 |
|
eqidd |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
221 |
|
nfriota1 |
⊢ Ⅎ 𝑞 ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) |
222 |
|
nfcv |
⊢ Ⅎ 𝑞 𝑛 |
223 |
|
nfcv |
⊢ Ⅎ 𝑞 +o |
224 |
222 223 221
|
nfov |
⊢ Ⅎ 𝑞 ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
225 |
224
|
nfeq1 |
⊢ Ⅎ 𝑞 ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = 𝑐 |
226 |
|
oveq2 |
⊢ ( 𝑞 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( 𝑛 +o 𝑞 ) = ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
227 |
226
|
eqeq1d |
⊢ ( 𝑞 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( ( 𝑛 +o 𝑞 ) = 𝑐 ↔ ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = 𝑐 ) ) |
228 |
221 225 227
|
riota2f |
⊢ ( ( ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω ∧ ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = 𝑐 ↔ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
229 |
217 189 228
|
syl2anc |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = 𝑐 ↔ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
230 |
220 229
|
mpbird |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = 𝑐 ) |
231 |
|
suceq |
⊢ ( ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = 𝑐 → suc ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc 𝑐 ) |
232 |
230 231
|
syl |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → suc ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc 𝑐 ) |
233 |
219 232
|
eqtrd |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( 𝑛 +o suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc 𝑐 ) |
234 |
|
peano2 |
⊢ ( ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω → suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω ) |
235 |
217 234
|
syl |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω ) |
236 |
|
peano2 |
⊢ ( 𝑝 ∈ ω → suc 𝑝 ∈ ω ) |
237 |
|
nnasuc |
⊢ ( ( 𝑛 ∈ ω ∧ 𝑝 ∈ ω ) → ( 𝑛 +o suc 𝑝 ) = suc ( 𝑛 +o 𝑝 ) ) |
238 |
177 237
|
sylan |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ 𝑝 ∈ ω ) → ( 𝑛 +o suc 𝑝 ) = suc ( 𝑛 +o 𝑝 ) ) |
239 |
|
oveq2 |
⊢ ( 𝑞 = suc 𝑝 → ( 𝑛 +o 𝑞 ) = ( 𝑛 +o suc 𝑝 ) ) |
240 |
239
|
eqeq1d |
⊢ ( 𝑞 = suc 𝑝 → ( ( 𝑛 +o 𝑞 ) = suc ( 𝑛 +o 𝑝 ) ↔ ( 𝑛 +o suc 𝑝 ) = suc ( 𝑛 +o 𝑝 ) ) ) |
241 |
240
|
rspcev |
⊢ ( ( suc 𝑝 ∈ ω ∧ ( 𝑛 +o suc 𝑝 ) = suc ( 𝑛 +o 𝑝 ) ) → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc ( 𝑛 +o 𝑝 ) ) |
242 |
236 238 241
|
syl2an2 |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ 𝑝 ∈ ω ) → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc ( 𝑛 +o 𝑝 ) ) |
243 |
|
suceq |
⊢ ( ( 𝑛 +o 𝑝 ) = 𝑐 → suc ( 𝑛 +o 𝑝 ) = suc 𝑐 ) |
244 |
243
|
eqeq2d |
⊢ ( ( 𝑛 +o 𝑝 ) = 𝑐 → ( ( 𝑛 +o 𝑞 ) = suc ( 𝑛 +o 𝑝 ) ↔ ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) |
245 |
244
|
rexbidv |
⊢ ( ( 𝑛 +o 𝑝 ) = 𝑐 → ( ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc ( 𝑛 +o 𝑝 ) ↔ ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) |
246 |
242 245
|
syl5ibcom |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ 𝑝 ∈ ω ) → ( ( 𝑛 +o 𝑝 ) = 𝑐 → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) |
247 |
246
|
rexlimdva |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( ∃ 𝑝 ∈ ω ( 𝑛 +o 𝑝 ) = 𝑐 → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) |
248 |
170 247
|
mpd |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) |
249 |
|
nnasmo |
⊢ ( 𝑛 ∈ ω → ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) |
250 |
177 249
|
syl |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) |
251 |
|
reu5 |
⊢ ( ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ↔ ( ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ∧ ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) |
252 |
248 250 251
|
sylanbrc |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) |
253 |
221
|
nfsuc |
⊢ Ⅎ 𝑞 suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) |
254 |
222 223 253
|
nfov |
⊢ Ⅎ 𝑞 ( 𝑛 +o suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
255 |
254
|
nfeq1 |
⊢ Ⅎ 𝑞 ( 𝑛 +o suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc 𝑐 |
256 |
|
oveq2 |
⊢ ( 𝑞 = suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( 𝑛 +o 𝑞 ) = ( 𝑛 +o suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
257 |
256
|
eqeq1d |
⊢ ( 𝑞 = suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( ( 𝑛 +o 𝑞 ) = suc 𝑐 ↔ ( 𝑛 +o suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc 𝑐 ) ) |
258 |
253 255 257
|
riota2f |
⊢ ( ( suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω ∧ ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) → ( ( 𝑛 +o suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc 𝑐 ↔ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) = suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
259 |
235 252 258
|
syl2anc |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( ( 𝑛 +o suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc 𝑐 ↔ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) = suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
260 |
233 259
|
mpbid |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) = suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
261 |
260
|
fveq2d |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) = ( 𝑔 ‘ suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
262 |
199 215 261
|
3brtr4d |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) |
263 |
262
|
ex |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( 𝑛 ∈ 𝑐 → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
264 |
|
fveq2 |
⊢ ( 𝑏 = ∅ → ( 𝑔 ‘ 𝑏 ) = ( 𝑔 ‘ ∅ ) ) |
265 |
|
suceq |
⊢ ( 𝑏 = ∅ → suc 𝑏 = suc ∅ ) |
266 |
265 59
|
eqtr4di |
⊢ ( 𝑏 = ∅ → suc 𝑏 = 1o ) |
267 |
266
|
fveq2d |
⊢ ( 𝑏 = ∅ → ( 𝑔 ‘ suc 𝑏 ) = ( 𝑔 ‘ 1o ) ) |
268 |
264 267
|
breq12d |
⊢ ( 𝑏 = ∅ → ( ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ↔ ( 𝑔 ‘ ∅ ) 𝑅 ( 𝑔 ‘ 1o ) ) ) |
269 |
|
eldif |
⊢ ( 𝑚 ∈ ( ω ∖ 1o ) ↔ ( 𝑚 ∈ ω ∧ ¬ 𝑚 ∈ 1o ) ) |
270 |
|
nnord |
⊢ ( 𝑚 ∈ ω → Ord 𝑚 ) |
271 |
|
ordtri1 |
⊢ ( ( Ord 1o ∧ Ord 𝑚 ) → ( 1o ⊆ 𝑚 ↔ ¬ 𝑚 ∈ 1o ) ) |
272 |
8 270 271
|
sylancr |
⊢ ( 𝑚 ∈ ω → ( 1o ⊆ 𝑚 ↔ ¬ 𝑚 ∈ 1o ) ) |
273 |
272
|
biimpar |
⊢ ( ( 𝑚 ∈ ω ∧ ¬ 𝑚 ∈ 1o ) → 1o ⊆ 𝑚 ) |
274 |
269 273
|
sylbi |
⊢ ( 𝑚 ∈ ( ω ∖ 1o ) → 1o ⊆ 𝑚 ) |
275 |
274
|
adantl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → 1o ⊆ 𝑚 ) |
276 |
59 275
|
eqsstrrid |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → suc ∅ ⊆ 𝑚 ) |
277 |
|
0ex |
⊢ ∅ ∈ V |
278 |
113 270
|
syl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → Ord 𝑚 ) |
279 |
|
ordelsuc |
⊢ ( ( ∅ ∈ V ∧ Ord 𝑚 ) → ( ∅ ∈ 𝑚 ↔ suc ∅ ⊆ 𝑚 ) ) |
280 |
277 278 279
|
sylancr |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ∅ ∈ 𝑚 ↔ suc ∅ ⊆ 𝑚 ) ) |
281 |
276 280
|
mpbird |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ∅ ∈ 𝑚 ) |
282 |
281
|
adantr |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ∅ ∈ 𝑚 ) |
283 |
268 156 282
|
rspcdva |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑔 ‘ ∅ ) 𝑅 ( 𝑔 ‘ 1o ) ) |
284 |
|
simpl2r |
⊢ ( ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ( 𝑓 ‘ 𝑛 ) = 𝑧 ) |
285 |
|
simpr2l |
⊢ ( ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ( 𝑔 ‘ ∅ ) = 𝑧 ) |
286 |
284 285
|
eqtr4d |
⊢ ( ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ( 𝑓 ‘ 𝑛 ) = ( 𝑔 ‘ ∅ ) ) |
287 |
286
|
adantl |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑓 ‘ 𝑛 ) = ( 𝑔 ‘ ∅ ) ) |
288 |
|
nnon |
⊢ ( 𝑛 ∈ ω → 𝑛 ∈ On ) |
289 |
38 288
|
syl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → 𝑛 ∈ On ) |
290 |
|
oa1suc |
⊢ ( 𝑛 ∈ On → ( 𝑛 +o 1o ) = suc 𝑛 ) |
291 |
289 290
|
syl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( 𝑛 +o 1o ) = suc 𝑛 ) |
292 |
|
1onn |
⊢ 1o ∈ ω |
293 |
|
oveq2 |
⊢ ( 𝑞 = 1o → ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 1o ) ) |
294 |
293
|
eqeq1d |
⊢ ( 𝑞 = 1o → ( ( 𝑛 +o 𝑞 ) = suc 𝑛 ↔ ( 𝑛 +o 1o ) = suc 𝑛 ) ) |
295 |
294
|
rspcev |
⊢ ( ( 1o ∈ ω ∧ ( 𝑛 +o 1o ) = suc 𝑛 ) → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) |
296 |
292 291 295
|
sylancr |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) |
297 |
|
nnasmo |
⊢ ( 𝑛 ∈ ω → ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) |
298 |
38 297
|
syl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) |
299 |
|
reu5 |
⊢ ( ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ↔ ( ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ∧ ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) ) |
300 |
296 298 299
|
sylanbrc |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) |
301 |
294
|
riota2 |
⊢ ( ( 1o ∈ ω ∧ ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) → ( ( 𝑛 +o 1o ) = suc 𝑛 ↔ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) = 1o ) ) |
302 |
292 300 301
|
sylancr |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ( 𝑛 +o 1o ) = suc 𝑛 ↔ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) = 1o ) ) |
303 |
291 302
|
mpbid |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) = 1o ) |
304 |
303
|
adantr |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) = 1o ) |
305 |
304
|
fveq2d |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) ) = ( 𝑔 ‘ 1o ) ) |
306 |
283 287 305
|
3brtr4d |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑓 ‘ 𝑛 ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) ) ) |
307 |
201
|
sucid |
⊢ 𝑛 ∈ suc 𝑛 |
308 |
307
|
iftruei |
⊢ if ( 𝑛 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑛 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) = ( 𝑓 ‘ 𝑛 ) |
309 |
|
eleq1 |
⊢ ( 𝑛 = 𝑐 → ( 𝑛 ∈ suc 𝑛 ↔ 𝑐 ∈ suc 𝑛 ) ) |
310 |
|
fveq2 |
⊢ ( 𝑛 = 𝑐 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑐 ) ) |
311 |
309 310
|
ifbieq1d |
⊢ ( 𝑛 = 𝑐 → if ( 𝑛 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑛 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) = if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) ) |
312 |
308 311
|
eqtr3id |
⊢ ( 𝑛 = 𝑐 → ( 𝑓 ‘ 𝑛 ) = if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) ) |
313 |
|
suceq |
⊢ ( 𝑛 = 𝑐 → suc 𝑛 = suc 𝑐 ) |
314 |
313
|
eqeq2d |
⊢ ( 𝑛 = 𝑐 → ( ( 𝑛 +o 𝑞 ) = suc 𝑛 ↔ ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) |
315 |
314
|
riotabidv |
⊢ ( 𝑛 = 𝑐 → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) |
316 |
315
|
fveq2d |
⊢ ( 𝑛 = 𝑐 → ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) ) = ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) |
317 |
312 316
|
breq12d |
⊢ ( 𝑛 = 𝑐 → ( ( 𝑓 ‘ 𝑛 ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) ) ↔ if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
318 |
306 317
|
syl5ibcom |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑛 = 𝑐 → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
319 |
318
|
adantr |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( 𝑛 = 𝑐 → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
320 |
263 319
|
jaod |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( ( 𝑛 ∈ 𝑐 ∨ 𝑛 = 𝑐 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
321 |
151 320
|
syld |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( ¬ 𝑐 ∈ 𝑛 → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
322 |
321
|
imp |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ ¬ 𝑐 ∈ 𝑛 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) |
323 |
135
|
notbid |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ¬ 𝑐 ∈ 𝑛 ↔ ¬ suc 𝑐 ∈ suc 𝑛 ) ) |
324 |
323
|
adantr |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( ¬ 𝑐 ∈ 𝑛 ↔ ¬ suc 𝑐 ∈ suc 𝑛 ) ) |
325 |
324
|
adantr |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( ¬ 𝑐 ∈ 𝑛 ↔ ¬ suc 𝑐 ∈ suc 𝑛 ) ) |
326 |
325
|
biimpa |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ ¬ 𝑐 ∈ 𝑛 ) → ¬ suc 𝑐 ∈ suc 𝑛 ) |
327 |
326
|
iffalsed |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ ¬ 𝑐 ∈ 𝑛 ) → if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) = ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) |
328 |
322 327
|
breqtrrd |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ ¬ 𝑐 ∈ 𝑛 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
329 |
140 328
|
pm2.61dan |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
330 |
|
elelsuc |
⊢ ( 𝑐 ∈ ( 𝑛 +o 𝑚 ) → 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) ) |
331 |
330
|
adantl |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) ) |
332 |
|
eleq1 |
⊢ ( 𝑝 = 𝑐 → ( 𝑝 ∈ suc 𝑛 ↔ 𝑐 ∈ suc 𝑛 ) ) |
333 |
|
fveq2 |
⊢ ( 𝑝 = 𝑐 → ( 𝑓 ‘ 𝑝 ) = ( 𝑓 ‘ 𝑐 ) ) |
334 |
|
eqeq2 |
⊢ ( 𝑝 = 𝑐 → ( ( 𝑛 +o 𝑞 ) = 𝑝 ↔ ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
335 |
334
|
riotabidv |
⊢ ( 𝑝 = 𝑐 → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
336 |
335
|
fveq2d |
⊢ ( 𝑝 = 𝑐 → ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) = ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
337 |
332 333 336
|
ifbieq12d |
⊢ ( 𝑝 = 𝑐 → if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) = if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) ) |
338 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑐 ) ∈ V |
339 |
|
fvex |
⊢ ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ∈ V |
340 |
338 339
|
ifex |
⊢ if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) ∈ V |
341 |
337 32 340
|
fvmpt |
⊢ ( 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) = if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) ) |
342 |
331 341
|
syl |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) = if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) ) |
343 |
|
ordsucelsuc |
⊢ ( Ord ( 𝑛 +o 𝑚 ) → ( 𝑐 ∈ ( 𝑛 +o 𝑚 ) ↔ suc 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) ) ) |
344 |
19 343
|
syl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( 𝑐 ∈ ( 𝑛 +o 𝑚 ) ↔ suc 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) ) ) |
345 |
344
|
adantr |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑐 ∈ ( 𝑛 +o 𝑚 ) ↔ suc 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) ) ) |
346 |
345
|
biimpa |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → suc 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) ) |
347 |
|
eleq1 |
⊢ ( 𝑝 = suc 𝑐 → ( 𝑝 ∈ suc 𝑛 ↔ suc 𝑐 ∈ suc 𝑛 ) ) |
348 |
|
fveq2 |
⊢ ( 𝑝 = suc 𝑐 → ( 𝑓 ‘ 𝑝 ) = ( 𝑓 ‘ suc 𝑐 ) ) |
349 |
|
eqeq2 |
⊢ ( 𝑝 = suc 𝑐 → ( ( 𝑛 +o 𝑞 ) = 𝑝 ↔ ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) |
350 |
349
|
riotabidv |
⊢ ( 𝑝 = suc 𝑐 → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) |
351 |
350
|
fveq2d |
⊢ ( 𝑝 = suc 𝑐 → ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) = ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) |
352 |
347 348 351
|
ifbieq12d |
⊢ ( 𝑝 = suc 𝑐 → if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) = if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
353 |
|
fvex |
⊢ ( 𝑓 ‘ suc 𝑐 ) ∈ V |
354 |
|
fvex |
⊢ ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ∈ V |
355 |
353 354
|
ifex |
⊢ if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ∈ V |
356 |
352 32 355
|
fvmpt |
⊢ ( suc 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) = if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
357 |
346 356
|
syl |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) = if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
358 |
329 342 357
|
3brtr4d |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) ) |
359 |
358
|
ralrimiva |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) ) |
360 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑝 ) ∈ V |
361 |
|
fvex |
⊢ ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ∈ V |
362 |
360 361
|
ifex |
⊢ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ∈ V |
363 |
362 32
|
fnmpti |
⊢ ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) Fn suc ( 𝑛 +o 𝑚 ) |
364 |
46
|
sucex |
⊢ suc ( 𝑛 +o 𝑚 ) ∈ V |
365 |
364
|
mptex |
⊢ ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ∈ V |
366 |
|
fneq1 |
⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ℎ Fn suc ( 𝑛 +o 𝑚 ) ↔ ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) Fn suc ( 𝑛 +o 𝑚 ) ) ) |
367 |
|
fveq1 |
⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ℎ ‘ ∅ ) = ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) ) |
368 |
367
|
eqeq1d |
⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ( ℎ ‘ ∅ ) = 𝑥 ↔ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = 𝑥 ) ) |
369 |
|
fveq1 |
⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) ) |
370 |
369
|
eqeq1d |
⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ↔ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ) |
371 |
368 370
|
anbi12d |
⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ↔ ( ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = 𝑥 ∧ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ) ) |
372 |
|
fveq1 |
⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ℎ ‘ 𝑐 ) = ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) ) |
373 |
|
fveq1 |
⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ℎ ‘ suc 𝑐 ) = ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) ) |
374 |
372 373
|
breq12d |
⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ↔ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) ) ) |
375 |
374
|
ralbidv |
⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ↔ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) ) ) |
376 |
366 371 375
|
3anbi123d |
⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ( ℎ Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ↔ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = 𝑥 ∧ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) ) ) ) |
377 |
365 376
|
spcev |
⊢ ( ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = 𝑥 ∧ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) ) → ∃ ℎ ( ℎ Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) |
378 |
363 377
|
mp3an1 |
⊢ ( ( ( ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = 𝑥 ∧ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) ) → ∃ ℎ ( ℎ Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) |
379 |
45 123 359 378
|
syl21anc |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ∃ ℎ ( ℎ Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) |
380 |
|
suceq |
⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → suc 𝑝 = suc ( 𝑛 +o 𝑚 ) ) |
381 |
380
|
fneq2d |
⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( ℎ Fn suc 𝑝 ↔ ℎ Fn suc ( 𝑛 +o 𝑚 ) ) ) |
382 |
|
fveqeq2 |
⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( ( ℎ ‘ 𝑝 ) = 𝑦 ↔ ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ) |
383 |
382
|
anbi2d |
⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ↔ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ) ) |
384 |
|
raleq |
⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ↔ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) |
385 |
381 383 384
|
3anbi123d |
⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( ( ℎ Fn suc 𝑝 ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ↔ ( ℎ Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) ) |
386 |
385
|
exbidv |
⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( ∃ ℎ ( ℎ Fn suc 𝑝 ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ↔ ∃ ℎ ( ℎ Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) ) |
387 |
386
|
rspcev |
⊢ ( ( ( 𝑛 +o 𝑚 ) ∈ ( ω ∖ 1o ) ∧ ∃ ℎ ( ℎ Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) → ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ℎ ( ℎ Fn suc 𝑝 ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) |
388 |
23 379 387
|
syl2an2r |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ℎ ( ℎ Fn suc 𝑝 ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) |
389 |
388
|
ex |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ℎ ( ℎ Fn suc 𝑝 ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) ) |
390 |
389
|
exlimdvv |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ℎ ( ℎ Fn suc 𝑝 ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) ) |
391 |
390
|
rexlimivv |
⊢ ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ℎ ( ℎ Fn suc 𝑝 ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) |
392 |
391
|
exlimiv |
⊢ ( ∃ 𝑧 ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ℎ ( ℎ Fn suc 𝑝 ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) |
393 |
|
vex |
⊢ 𝑥 ∈ V |
394 |
|
vex |
⊢ 𝑦 ∈ V |
395 |
393 394
|
opelco |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( t++ 𝑅 ∘ t++ 𝑅 ) ↔ ∃ 𝑧 ( 𝑥 t++ 𝑅 𝑧 ∧ 𝑧 t++ 𝑅 𝑦 ) ) |
396 |
|
reeanv |
⊢ ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ( ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ∃ 𝑔 ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ↔ ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑔 ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
397 |
|
eeanv |
⊢ ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ∃ 𝑔 ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
398 |
397
|
2rexbii |
⊢ ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ↔ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ( ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ∃ 𝑔 ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
399 |
|
brttrcl |
⊢ ( 𝑥 t++ 𝑅 𝑧 ↔ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
400 |
|
brttrcl |
⊢ ( 𝑧 t++ 𝑅 𝑦 ↔ ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑔 ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) |
401 |
399 400
|
anbi12i |
⊢ ( ( 𝑥 t++ 𝑅 𝑧 ∧ 𝑧 t++ 𝑅 𝑦 ) ↔ ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑔 ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
402 |
396 398 401
|
3bitr4ri |
⊢ ( ( 𝑥 t++ 𝑅 𝑧 ∧ 𝑧 t++ 𝑅 𝑦 ) ↔ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
403 |
402
|
exbii |
⊢ ( ∃ 𝑧 ( 𝑥 t++ 𝑅 𝑧 ∧ 𝑧 t++ 𝑅 𝑦 ) ↔ ∃ 𝑧 ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
404 |
395 403
|
bitri |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( t++ 𝑅 ∘ t++ 𝑅 ) ↔ ∃ 𝑧 ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
405 |
|
df-br |
⊢ ( 𝑥 t++ 𝑅 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ t++ 𝑅 ) |
406 |
|
brttrcl |
⊢ ( 𝑥 t++ 𝑅 𝑦 ↔ ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ℎ ( ℎ Fn suc 𝑝 ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) |
407 |
405 406
|
bitr3i |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ t++ 𝑅 ↔ ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ℎ ( ℎ Fn suc 𝑝 ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) |
408 |
392 404 407
|
3imtr4i |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( t++ 𝑅 ∘ t++ 𝑅 ) → 〈 𝑥 , 𝑦 〉 ∈ t++ 𝑅 ) |
409 |
1 408
|
relssi |
⊢ ( t++ 𝑅 ∘ t++ 𝑅 ) ⊆ t++ 𝑅 |