| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relco |
⊢ Rel ( t++ 𝑅 ∘ t++ 𝑅 ) |
| 2 |
|
eldifi |
⊢ ( 𝑛 ∈ ( ω ∖ 1o ) → 𝑛 ∈ ω ) |
| 3 |
|
eldifi |
⊢ ( 𝑚 ∈ ( ω ∖ 1o ) → 𝑚 ∈ ω ) |
| 4 |
|
nnacl |
⊢ ( ( 𝑛 ∈ ω ∧ 𝑚 ∈ ω ) → ( 𝑛 +o 𝑚 ) ∈ ω ) |
| 5 |
2 3 4
|
syl2an |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( 𝑛 +o 𝑚 ) ∈ ω ) |
| 6 |
|
eldif |
⊢ ( 𝑛 ∈ ( ω ∖ 1o ) ↔ ( 𝑛 ∈ ω ∧ ¬ 𝑛 ∈ 1o ) ) |
| 7 |
|
1on |
⊢ 1o ∈ On |
| 8 |
7
|
onordi |
⊢ Ord 1o |
| 9 |
|
nnord |
⊢ ( 𝑛 ∈ ω → Ord 𝑛 ) |
| 10 |
|
ordtri1 |
⊢ ( ( Ord 1o ∧ Ord 𝑛 ) → ( 1o ⊆ 𝑛 ↔ ¬ 𝑛 ∈ 1o ) ) |
| 11 |
8 9 10
|
sylancr |
⊢ ( 𝑛 ∈ ω → ( 1o ⊆ 𝑛 ↔ ¬ 𝑛 ∈ 1o ) ) |
| 12 |
11
|
biimpar |
⊢ ( ( 𝑛 ∈ ω ∧ ¬ 𝑛 ∈ 1o ) → 1o ⊆ 𝑛 ) |
| 13 |
6 12
|
sylbi |
⊢ ( 𝑛 ∈ ( ω ∖ 1o ) → 1o ⊆ 𝑛 ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → 1o ⊆ 𝑛 ) |
| 15 |
|
nnaword1 |
⊢ ( ( 𝑛 ∈ ω ∧ 𝑚 ∈ ω ) → 𝑛 ⊆ ( 𝑛 +o 𝑚 ) ) |
| 16 |
2 3 15
|
syl2an |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → 𝑛 ⊆ ( 𝑛 +o 𝑚 ) ) |
| 17 |
14 16
|
sstrd |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → 1o ⊆ ( 𝑛 +o 𝑚 ) ) |
| 18 |
|
nnord |
⊢ ( ( 𝑛 +o 𝑚 ) ∈ ω → Ord ( 𝑛 +o 𝑚 ) ) |
| 19 |
5 18
|
syl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → Ord ( 𝑛 +o 𝑚 ) ) |
| 20 |
|
ordtri1 |
⊢ ( ( Ord 1o ∧ Ord ( 𝑛 +o 𝑚 ) ) → ( 1o ⊆ ( 𝑛 +o 𝑚 ) ↔ ¬ ( 𝑛 +o 𝑚 ) ∈ 1o ) ) |
| 21 |
8 19 20
|
sylancr |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( 1o ⊆ ( 𝑛 +o 𝑚 ) ↔ ¬ ( 𝑛 +o 𝑚 ) ∈ 1o ) ) |
| 22 |
17 21
|
mpbid |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ¬ ( 𝑛 +o 𝑚 ) ∈ 1o ) |
| 23 |
5 22
|
eldifd |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( 𝑛 +o 𝑚 ) ∈ ( ω ∖ 1o ) ) |
| 24 |
|
0elsuc |
⊢ ( Ord ( 𝑛 +o 𝑚 ) → ∅ ∈ suc ( 𝑛 +o 𝑚 ) ) |
| 25 |
19 24
|
syl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ∅ ∈ suc ( 𝑛 +o 𝑚 ) ) |
| 26 |
|
eleq1 |
⊢ ( 𝑝 = ∅ → ( 𝑝 ∈ suc 𝑛 ↔ ∅ ∈ suc 𝑛 ) ) |
| 27 |
|
fveq2 |
⊢ ( 𝑝 = ∅ → ( 𝑓 ‘ 𝑝 ) = ( 𝑓 ‘ ∅ ) ) |
| 28 |
|
eqeq2 |
⊢ ( 𝑝 = ∅ → ( ( 𝑛 +o 𝑞 ) = 𝑝 ↔ ( 𝑛 +o 𝑞 ) = ∅ ) ) |
| 29 |
28
|
riotabidv |
⊢ ( 𝑝 = ∅ → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) |
| 30 |
29
|
fveq2d |
⊢ ( 𝑝 = ∅ → ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) = ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) ) |
| 31 |
26 27 30
|
ifbieq12d |
⊢ ( 𝑝 = ∅ → if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) = if ( ∅ ∈ suc 𝑛 , ( 𝑓 ‘ ∅ ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) ) ) |
| 32 |
|
eqid |
⊢ ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) |
| 33 |
|
fvex |
⊢ ( 𝑓 ‘ ∅ ) ∈ V |
| 34 |
|
fvex |
⊢ ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) ∈ V |
| 35 |
33 34
|
ifex |
⊢ if ( ∅ ∈ suc 𝑛 , ( 𝑓 ‘ ∅ ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) ) ∈ V |
| 36 |
31 32 35
|
fvmpt |
⊢ ( ∅ ∈ suc ( 𝑛 +o 𝑚 ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = if ( ∅ ∈ suc 𝑛 , ( 𝑓 ‘ ∅ ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) ) ) |
| 37 |
25 36
|
syl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = if ( ∅ ∈ suc 𝑛 , ( 𝑓 ‘ ∅ ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) ) ) |
| 38 |
2
|
adantr |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → 𝑛 ∈ ω ) |
| 39 |
38 9
|
syl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → Ord 𝑛 ) |
| 40 |
|
0elsuc |
⊢ ( Ord 𝑛 → ∅ ∈ suc 𝑛 ) |
| 41 |
39 40
|
syl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ∅ ∈ suc 𝑛 ) |
| 42 |
41
|
iftrued |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → if ( ∅ ∈ suc 𝑛 , ( 𝑓 ‘ ∅ ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) ) = ( 𝑓 ‘ ∅ ) ) |
| 43 |
37 42
|
eqtrd |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = ( 𝑓 ‘ ∅ ) ) |
| 44 |
|
simpl2l |
⊢ ( ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ( 𝑓 ‘ ∅ ) = 𝑥 ) |
| 45 |
43 44
|
sylan9eq |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = 𝑥 ) |
| 46 |
|
ovex |
⊢ ( 𝑛 +o 𝑚 ) ∈ V |
| 47 |
46
|
sucid |
⊢ ( 𝑛 +o 𝑚 ) ∈ suc ( 𝑛 +o 𝑚 ) |
| 48 |
|
eleq1 |
⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( 𝑝 ∈ suc 𝑛 ↔ ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 ) ) |
| 49 |
|
fveq2 |
⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( 𝑓 ‘ 𝑝 ) = ( 𝑓 ‘ ( 𝑛 +o 𝑚 ) ) ) |
| 50 |
|
eqeq2 |
⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( ( 𝑛 +o 𝑞 ) = 𝑝 ↔ ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) |
| 51 |
50
|
riotabidv |
⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) |
| 52 |
51
|
fveq2d |
⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) = ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) ) |
| 53 |
48 49 52
|
ifbieq12d |
⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) = if ( ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 , ( 𝑓 ‘ ( 𝑛 +o 𝑚 ) ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) ) ) |
| 54 |
|
fvex |
⊢ ( 𝑓 ‘ ( 𝑛 +o 𝑚 ) ) ∈ V |
| 55 |
|
fvex |
⊢ ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) ∈ V |
| 56 |
54 55
|
ifex |
⊢ if ( ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 , ( 𝑓 ‘ ( 𝑛 +o 𝑚 ) ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) ) ∈ V |
| 57 |
53 32 56
|
fvmpt |
⊢ ( ( 𝑛 +o 𝑚 ) ∈ suc ( 𝑛 +o 𝑚 ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = if ( ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 , ( 𝑓 ‘ ( 𝑛 +o 𝑚 ) ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) ) ) |
| 58 |
47 57
|
mp1i |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = if ( ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 , ( 𝑓 ‘ ( 𝑛 +o 𝑚 ) ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) ) ) |
| 59 |
|
df-1o |
⊢ 1o = suc ∅ |
| 60 |
59
|
difeq2i |
⊢ ( ω ∖ 1o ) = ( ω ∖ suc ∅ ) |
| 61 |
60
|
eleq2i |
⊢ ( 𝑛 ∈ ( ω ∖ 1o ) ↔ 𝑛 ∈ ( ω ∖ suc ∅ ) ) |
| 62 |
|
peano1 |
⊢ ∅ ∈ ω |
| 63 |
|
eldifsucnn |
⊢ ( ∅ ∈ ω → ( 𝑛 ∈ ( ω ∖ suc ∅ ) ↔ ∃ 𝑥 ∈ ( ω ∖ ∅ ) 𝑛 = suc 𝑥 ) ) |
| 64 |
62 63
|
ax-mp |
⊢ ( 𝑛 ∈ ( ω ∖ suc ∅ ) ↔ ∃ 𝑥 ∈ ( ω ∖ ∅ ) 𝑛 = suc 𝑥 ) |
| 65 |
|
dif0 |
⊢ ( ω ∖ ∅ ) = ω |
| 66 |
65
|
rexeqi |
⊢ ( ∃ 𝑥 ∈ ( ω ∖ ∅ ) 𝑛 = suc 𝑥 ↔ ∃ 𝑥 ∈ ω 𝑛 = suc 𝑥 ) |
| 67 |
61 64 66
|
3bitri |
⊢ ( 𝑛 ∈ ( ω ∖ 1o ) ↔ ∃ 𝑥 ∈ ω 𝑛 = suc 𝑥 ) |
| 68 |
60
|
eleq2i |
⊢ ( 𝑚 ∈ ( ω ∖ 1o ) ↔ 𝑚 ∈ ( ω ∖ suc ∅ ) ) |
| 69 |
|
eldifsucnn |
⊢ ( ∅ ∈ ω → ( 𝑚 ∈ ( ω ∖ suc ∅ ) ↔ ∃ 𝑦 ∈ ( ω ∖ ∅ ) 𝑚 = suc 𝑦 ) ) |
| 70 |
62 69
|
ax-mp |
⊢ ( 𝑚 ∈ ( ω ∖ suc ∅ ) ↔ ∃ 𝑦 ∈ ( ω ∖ ∅ ) 𝑚 = suc 𝑦 ) |
| 71 |
65
|
rexeqi |
⊢ ( ∃ 𝑦 ∈ ( ω ∖ ∅ ) 𝑚 = suc 𝑦 ↔ ∃ 𝑦 ∈ ω 𝑚 = suc 𝑦 ) |
| 72 |
68 70 71
|
3bitri |
⊢ ( 𝑚 ∈ ( ω ∖ 1o ) ↔ ∃ 𝑦 ∈ ω 𝑚 = suc 𝑦 ) |
| 73 |
67 72
|
anbi12i |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ↔ ( ∃ 𝑥 ∈ ω 𝑛 = suc 𝑥 ∧ ∃ 𝑦 ∈ ω 𝑚 = suc 𝑦 ) ) |
| 74 |
|
reeanv |
⊢ ( ∃ 𝑥 ∈ ω ∃ 𝑦 ∈ ω ( 𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦 ) ↔ ( ∃ 𝑥 ∈ ω 𝑛 = suc 𝑥 ∧ ∃ 𝑦 ∈ ω 𝑚 = suc 𝑦 ) ) |
| 75 |
73 74
|
bitr4i |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ↔ ∃ 𝑥 ∈ ω ∃ 𝑦 ∈ ω ( 𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦 ) ) |
| 76 |
|
peano2 |
⊢ ( 𝑥 ∈ ω → suc 𝑥 ∈ ω ) |
| 77 |
|
nnaword1 |
⊢ ( ( suc 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → suc 𝑥 ⊆ ( suc 𝑥 +o 𝑦 ) ) |
| 78 |
76 77
|
sylan |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → suc 𝑥 ⊆ ( suc 𝑥 +o 𝑦 ) ) |
| 79 |
76
|
adantr |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → suc 𝑥 ∈ ω ) |
| 80 |
|
nnord |
⊢ ( suc 𝑥 ∈ ω → Ord suc 𝑥 ) |
| 81 |
79 80
|
syl |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → Ord suc 𝑥 ) |
| 82 |
|
nnacl |
⊢ ( ( suc 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝑥 +o 𝑦 ) ∈ ω ) |
| 83 |
76 82
|
sylan |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝑥 +o 𝑦 ) ∈ ω ) |
| 84 |
|
nnord |
⊢ ( ( suc 𝑥 +o 𝑦 ) ∈ ω → Ord ( suc 𝑥 +o 𝑦 ) ) |
| 85 |
83 84
|
syl |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → Ord ( suc 𝑥 +o 𝑦 ) ) |
| 86 |
|
ordsucsssuc |
⊢ ( ( Ord suc 𝑥 ∧ Ord ( suc 𝑥 +o 𝑦 ) ) → ( suc 𝑥 ⊆ ( suc 𝑥 +o 𝑦 ) ↔ suc suc 𝑥 ⊆ suc ( suc 𝑥 +o 𝑦 ) ) ) |
| 87 |
81 85 86
|
syl2anc |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝑥 ⊆ ( suc 𝑥 +o 𝑦 ) ↔ suc suc 𝑥 ⊆ suc ( suc 𝑥 +o 𝑦 ) ) ) |
| 88 |
78 87
|
mpbid |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → suc suc 𝑥 ⊆ suc ( suc 𝑥 +o 𝑦 ) ) |
| 89 |
|
nnasuc |
⊢ ( ( suc 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝑥 +o suc 𝑦 ) = suc ( suc 𝑥 +o 𝑦 ) ) |
| 90 |
76 89
|
sylan |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝑥 +o suc 𝑦 ) = suc ( suc 𝑥 +o 𝑦 ) ) |
| 91 |
88 90
|
sseqtrrd |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → suc suc 𝑥 ⊆ ( suc 𝑥 +o suc 𝑦 ) ) |
| 92 |
|
peano2 |
⊢ ( suc 𝑥 ∈ ω → suc suc 𝑥 ∈ ω ) |
| 93 |
79 92
|
syl |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → suc suc 𝑥 ∈ ω ) |
| 94 |
|
nnord |
⊢ ( suc suc 𝑥 ∈ ω → Ord suc suc 𝑥 ) |
| 95 |
93 94
|
syl |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → Ord suc suc 𝑥 ) |
| 96 |
|
peano2 |
⊢ ( 𝑦 ∈ ω → suc 𝑦 ∈ ω ) |
| 97 |
|
nnacl |
⊢ ( ( suc 𝑥 ∈ ω ∧ suc 𝑦 ∈ ω ) → ( suc 𝑥 +o suc 𝑦 ) ∈ ω ) |
| 98 |
76 96 97
|
syl2an |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝑥 +o suc 𝑦 ) ∈ ω ) |
| 99 |
|
nnord |
⊢ ( ( suc 𝑥 +o suc 𝑦 ) ∈ ω → Ord ( suc 𝑥 +o suc 𝑦 ) ) |
| 100 |
98 99
|
syl |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → Ord ( suc 𝑥 +o suc 𝑦 ) ) |
| 101 |
|
ordtri1 |
⊢ ( ( Ord suc suc 𝑥 ∧ Ord ( suc 𝑥 +o suc 𝑦 ) ) → ( suc suc 𝑥 ⊆ ( suc 𝑥 +o suc 𝑦 ) ↔ ¬ ( suc 𝑥 +o suc 𝑦 ) ∈ suc suc 𝑥 ) ) |
| 102 |
95 100 101
|
syl2anc |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc suc 𝑥 ⊆ ( suc 𝑥 +o suc 𝑦 ) ↔ ¬ ( suc 𝑥 +o suc 𝑦 ) ∈ suc suc 𝑥 ) ) |
| 103 |
91 102
|
mpbid |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ¬ ( suc 𝑥 +o suc 𝑦 ) ∈ suc suc 𝑥 ) |
| 104 |
|
oveq12 |
⊢ ( ( 𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦 ) → ( 𝑛 +o 𝑚 ) = ( suc 𝑥 +o suc 𝑦 ) ) |
| 105 |
|
suceq |
⊢ ( 𝑛 = suc 𝑥 → suc 𝑛 = suc suc 𝑥 ) |
| 106 |
105
|
adantr |
⊢ ( ( 𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦 ) → suc 𝑛 = suc suc 𝑥 ) |
| 107 |
104 106
|
eleq12d |
⊢ ( ( 𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦 ) → ( ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 ↔ ( suc 𝑥 +o suc 𝑦 ) ∈ suc suc 𝑥 ) ) |
| 108 |
107
|
notbid |
⊢ ( ( 𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦 ) → ( ¬ ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 ↔ ¬ ( suc 𝑥 +o suc 𝑦 ) ∈ suc suc 𝑥 ) ) |
| 109 |
103 108
|
syl5ibrcom |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦 ) → ¬ ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 ) ) |
| 110 |
109
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ ω ∃ 𝑦 ∈ ω ( 𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦 ) → ¬ ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 ) |
| 111 |
75 110
|
sylbi |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ¬ ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 ) |
| 112 |
111
|
iffalsed |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → if ( ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 , ( 𝑓 ‘ ( 𝑛 +o 𝑚 ) ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) ) = ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) ) |
| 113 |
3
|
adantl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → 𝑚 ∈ ω ) |
| 114 |
38
|
adantr |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ 𝑞 ∈ ω ) → 𝑛 ∈ ω ) |
| 115 |
|
simpr |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ 𝑞 ∈ ω ) → 𝑞 ∈ ω ) |
| 116 |
113
|
adantr |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ 𝑞 ∈ ω ) → 𝑚 ∈ ω ) |
| 117 |
|
nnacan |
⊢ ( ( 𝑛 ∈ ω ∧ 𝑞 ∈ ω ∧ 𝑚 ∈ ω ) → ( ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ↔ 𝑞 = 𝑚 ) ) |
| 118 |
114 115 116 117
|
syl3anc |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ 𝑞 ∈ ω ) → ( ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ↔ 𝑞 = 𝑚 ) ) |
| 119 |
113 118
|
riota5 |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) = 𝑚 ) |
| 120 |
119
|
fveq2d |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) = ( 𝑔 ‘ 𝑚 ) ) |
| 121 |
58 112 120
|
3eqtrd |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = ( 𝑔 ‘ 𝑚 ) ) |
| 122 |
|
simpr2r |
⊢ ( ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ( 𝑔 ‘ 𝑚 ) = 𝑦 ) |
| 123 |
121 122
|
sylan9eq |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) |
| 124 |
|
simprl3 |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) |
| 125 |
|
fveq2 |
⊢ ( 𝑎 = 𝑐 → ( 𝑓 ‘ 𝑎 ) = ( 𝑓 ‘ 𝑐 ) ) |
| 126 |
|
suceq |
⊢ ( 𝑎 = 𝑐 → suc 𝑎 = suc 𝑐 ) |
| 127 |
126
|
fveq2d |
⊢ ( 𝑎 = 𝑐 → ( 𝑓 ‘ suc 𝑎 ) = ( 𝑓 ‘ suc 𝑐 ) ) |
| 128 |
125 127
|
breq12d |
⊢ ( 𝑎 = 𝑐 → ( ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ 𝑐 ) 𝑅 ( 𝑓 ‘ suc 𝑐 ) ) ) |
| 129 |
128
|
rspcv |
⊢ ( 𝑐 ∈ 𝑛 → ( ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) → ( 𝑓 ‘ 𝑐 ) 𝑅 ( 𝑓 ‘ suc 𝑐 ) ) ) |
| 130 |
124 129
|
mpan9 |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ 𝑛 ) → ( 𝑓 ‘ 𝑐 ) 𝑅 ( 𝑓 ‘ suc 𝑐 ) ) |
| 131 |
|
elelsuc |
⊢ ( 𝑐 ∈ 𝑛 → 𝑐 ∈ suc 𝑛 ) |
| 132 |
131
|
adantl |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ 𝑛 ) → 𝑐 ∈ suc 𝑛 ) |
| 133 |
132
|
iftrued |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ 𝑛 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) = ( 𝑓 ‘ 𝑐 ) ) |
| 134 |
|
ordsucelsuc |
⊢ ( Ord 𝑛 → ( 𝑐 ∈ 𝑛 ↔ suc 𝑐 ∈ suc 𝑛 ) ) |
| 135 |
39 134
|
syl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( 𝑐 ∈ 𝑛 ↔ suc 𝑐 ∈ suc 𝑛 ) ) |
| 136 |
135
|
adantr |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑐 ∈ 𝑛 ↔ suc 𝑐 ∈ suc 𝑛 ) ) |
| 137 |
136
|
biimpa |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ 𝑛 ) → suc 𝑐 ∈ suc 𝑛 ) |
| 138 |
137
|
iftrued |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ 𝑛 ) → if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) = ( 𝑓 ‘ suc 𝑐 ) ) |
| 139 |
130 133 138
|
3brtr4d |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ 𝑛 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
| 140 |
139
|
adantlr |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑐 ∈ 𝑛 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
| 141 |
39
|
adantr |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → Ord 𝑛 ) |
| 142 |
5
|
adantr |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑛 +o 𝑚 ) ∈ ω ) |
| 143 |
|
elnn |
⊢ ( ( 𝑐 ∈ ( 𝑛 +o 𝑚 ) ∧ ( 𝑛 +o 𝑚 ) ∈ ω ) → 𝑐 ∈ ω ) |
| 144 |
143
|
ancoms |
⊢ ( ( ( 𝑛 +o 𝑚 ) ∈ ω ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → 𝑐 ∈ ω ) |
| 145 |
142 144
|
sylan |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → 𝑐 ∈ ω ) |
| 146 |
|
nnord |
⊢ ( 𝑐 ∈ ω → Ord 𝑐 ) |
| 147 |
145 146
|
syl |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → Ord 𝑐 ) |
| 148 |
|
ordtri3or |
⊢ ( ( Ord 𝑛 ∧ Ord 𝑐 ) → ( 𝑛 ∈ 𝑐 ∨ 𝑛 = 𝑐 ∨ 𝑐 ∈ 𝑛 ) ) |
| 149 |
141 147 148
|
syl2an2r |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( 𝑛 ∈ 𝑐 ∨ 𝑛 = 𝑐 ∨ 𝑐 ∈ 𝑛 ) ) |
| 150 |
|
3orel3 |
⊢ ( ¬ 𝑐 ∈ 𝑛 → ( ( 𝑛 ∈ 𝑐 ∨ 𝑛 = 𝑐 ∨ 𝑐 ∈ 𝑛 ) → ( 𝑛 ∈ 𝑐 ∨ 𝑛 = 𝑐 ) ) ) |
| 151 |
149 150
|
syl5com |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( ¬ 𝑐 ∈ 𝑛 → ( 𝑛 ∈ 𝑐 ∨ 𝑛 = 𝑐 ) ) ) |
| 152 |
|
fveq2 |
⊢ ( 𝑏 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( 𝑔 ‘ 𝑏 ) = ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
| 153 |
|
suceq |
⊢ ( 𝑏 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → suc 𝑏 = suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
| 154 |
153
|
fveq2d |
⊢ ( 𝑏 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( 𝑔 ‘ suc 𝑏 ) = ( 𝑔 ‘ suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
| 155 |
152 154
|
breq12d |
⊢ ( 𝑏 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ↔ ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) 𝑅 ( 𝑔 ‘ suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) ) |
| 156 |
|
simprr3 |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) |
| 157 |
156
|
adantr |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) |
| 158 |
157
|
adantr |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) |
| 159 |
|
ordelss |
⊢ ( ( Ord 𝑐 ∧ 𝑛 ∈ 𝑐 ) → 𝑛 ⊆ 𝑐 ) |
| 160 |
147 159
|
sylan |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → 𝑛 ⊆ 𝑐 ) |
| 161 |
38
|
adantr |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → 𝑛 ∈ ω ) |
| 162 |
161
|
adantr |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → 𝑛 ∈ ω ) |
| 163 |
145
|
adantr |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → 𝑐 ∈ ω ) |
| 164 |
|
nnawordex |
⊢ ( ( 𝑛 ∈ ω ∧ 𝑐 ∈ ω ) → ( 𝑛 ⊆ 𝑐 ↔ ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
| 165 |
162 163 164
|
syl2an2r |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( 𝑛 ⊆ 𝑐 ↔ ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
| 166 |
160 165
|
mpbid |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) |
| 167 |
|
oveq2 |
⊢ ( 𝑞 = 𝑝 → ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑝 ) ) |
| 168 |
167
|
eqeq1d |
⊢ ( 𝑞 = 𝑝 → ( ( 𝑛 +o 𝑞 ) = 𝑐 ↔ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) |
| 169 |
168
|
cbvrexvw |
⊢ ( ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ↔ ∃ 𝑝 ∈ ω ( 𝑛 +o 𝑝 ) = 𝑐 ) |
| 170 |
166 169
|
sylib |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ∃ 𝑝 ∈ ω ( 𝑛 +o 𝑝 ) = 𝑐 ) |
| 171 |
|
simprr |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → ( 𝑛 +o 𝑝 ) = 𝑐 ) |
| 172 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) |
| 173 |
171 172
|
eqeltrd |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → ( 𝑛 +o 𝑝 ) ∈ ( 𝑛 +o 𝑚 ) ) |
| 174 |
|
simprl |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → 𝑝 ∈ ω ) |
| 175 |
3
|
ad4antlr |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → 𝑚 ∈ ω ) |
| 176 |
175
|
adantr |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → 𝑚 ∈ ω ) |
| 177 |
162
|
adantr |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → 𝑛 ∈ ω ) |
| 178 |
177
|
adantr |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → 𝑛 ∈ ω ) |
| 179 |
|
nnaord |
⊢ ( ( 𝑝 ∈ ω ∧ 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) → ( 𝑝 ∈ 𝑚 ↔ ( 𝑛 +o 𝑝 ) ∈ ( 𝑛 +o 𝑚 ) ) ) |
| 180 |
174 176 178 179
|
syl3anc |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → ( 𝑝 ∈ 𝑚 ↔ ( 𝑛 +o 𝑝 ) ∈ ( 𝑛 +o 𝑚 ) ) ) |
| 181 |
173 180
|
mpbird |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → 𝑝 ∈ 𝑚 ) |
| 182 |
170 181 171
|
reximssdv |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ∃ 𝑝 ∈ 𝑚 ( 𝑛 +o 𝑝 ) = 𝑐 ) |
| 183 |
|
elnn |
⊢ ( ( 𝑝 ∈ 𝑚 ∧ 𝑚 ∈ ω ) → 𝑝 ∈ ω ) |
| 184 |
183
|
ancoms |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) → 𝑝 ∈ ω ) |
| 185 |
175 184
|
sylan |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ 𝑝 ∈ 𝑚 ) → 𝑝 ∈ ω ) |
| 186 |
|
nnasmo |
⊢ ( 𝑛 ∈ ω → ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) |
| 187 |
177 186
|
syl |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) |
| 188 |
|
reu5 |
⊢ ( ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ↔ ( ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ∧ ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
| 189 |
166 187 188
|
sylanbrc |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) |
| 190 |
189
|
adantr |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ 𝑝 ∈ 𝑚 ) → ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) |
| 191 |
168
|
riota2 |
⊢ ( ( 𝑝 ∈ ω ∧ ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( ( 𝑛 +o 𝑝 ) = 𝑐 ↔ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) = 𝑝 ) ) |
| 192 |
185 190 191
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ 𝑝 ∈ 𝑚 ) → ( ( 𝑛 +o 𝑝 ) = 𝑐 ↔ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) = 𝑝 ) ) |
| 193 |
|
eqcom |
⊢ ( ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) = 𝑝 ↔ 𝑝 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
| 194 |
192 193
|
bitrdi |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ 𝑝 ∈ 𝑚 ) → ( ( 𝑛 +o 𝑝 ) = 𝑐 ↔ 𝑝 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
| 195 |
194
|
rexbidva |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( ∃ 𝑝 ∈ 𝑚 ( 𝑛 +o 𝑝 ) = 𝑐 ↔ ∃ 𝑝 ∈ 𝑚 𝑝 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
| 196 |
182 195
|
mpbid |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ∃ 𝑝 ∈ 𝑚 𝑝 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
| 197 |
|
risset |
⊢ ( ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ 𝑚 ↔ ∃ 𝑝 ∈ 𝑚 𝑝 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
| 198 |
196 197
|
sylibr |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ 𝑚 ) |
| 199 |
155 158 198
|
rspcdva |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) 𝑅 ( 𝑔 ‘ suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
| 200 |
|
simpr |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → 𝑛 ∈ 𝑐 ) |
| 201 |
|
vex |
⊢ 𝑛 ∈ V |
| 202 |
147
|
adantr |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → Ord 𝑐 ) |
| 203 |
|
ordelsuc |
⊢ ( ( 𝑛 ∈ V ∧ Ord 𝑐 ) → ( 𝑛 ∈ 𝑐 ↔ suc 𝑛 ⊆ 𝑐 ) ) |
| 204 |
201 202 203
|
sylancr |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( 𝑛 ∈ 𝑐 ↔ suc 𝑛 ⊆ 𝑐 ) ) |
| 205 |
|
peano2 |
⊢ ( 𝑛 ∈ ω → suc 𝑛 ∈ ω ) |
| 206 |
38 205
|
syl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → suc 𝑛 ∈ ω ) |
| 207 |
|
nnord |
⊢ ( suc 𝑛 ∈ ω → Ord suc 𝑛 ) |
| 208 |
206 207
|
syl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → Ord suc 𝑛 ) |
| 209 |
208
|
adantr |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → Ord suc 𝑛 ) |
| 210 |
209
|
adantr |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → Ord suc 𝑛 ) |
| 211 |
|
ordtri1 |
⊢ ( ( Ord suc 𝑛 ∧ Ord 𝑐 ) → ( suc 𝑛 ⊆ 𝑐 ↔ ¬ 𝑐 ∈ suc 𝑛 ) ) |
| 212 |
210 202 211
|
syl2an2r |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( suc 𝑛 ⊆ 𝑐 ↔ ¬ 𝑐 ∈ suc 𝑛 ) ) |
| 213 |
204 212
|
bitrd |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( 𝑛 ∈ 𝑐 ↔ ¬ 𝑐 ∈ suc 𝑛 ) ) |
| 214 |
200 213
|
mpbid |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ¬ 𝑐 ∈ suc 𝑛 ) |
| 215 |
214
|
iffalsed |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) = ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
| 216 |
|
riotacl |
⊢ ( ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω ) |
| 217 |
189 216
|
syl |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω ) |
| 218 |
|
nnasuc |
⊢ ( ( 𝑛 ∈ ω ∧ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω ) → ( 𝑛 +o suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
| 219 |
162 217 218
|
syl2an2r |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( 𝑛 +o suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
| 220 |
|
eqidd |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
| 221 |
|
nfriota1 |
⊢ Ⅎ 𝑞 ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) |
| 222 |
|
nfcv |
⊢ Ⅎ 𝑞 𝑛 |
| 223 |
|
nfcv |
⊢ Ⅎ 𝑞 +o |
| 224 |
222 223 221
|
nfov |
⊢ Ⅎ 𝑞 ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
| 225 |
224
|
nfeq1 |
⊢ Ⅎ 𝑞 ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = 𝑐 |
| 226 |
|
oveq2 |
⊢ ( 𝑞 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( 𝑛 +o 𝑞 ) = ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
| 227 |
226
|
eqeq1d |
⊢ ( 𝑞 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( ( 𝑛 +o 𝑞 ) = 𝑐 ↔ ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = 𝑐 ) ) |
| 228 |
221 225 227
|
riota2f |
⊢ ( ( ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω ∧ ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = 𝑐 ↔ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
| 229 |
217 189 228
|
syl2anc |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = 𝑐 ↔ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
| 230 |
220 229
|
mpbird |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = 𝑐 ) |
| 231 |
|
suceq |
⊢ ( ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = 𝑐 → suc ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc 𝑐 ) |
| 232 |
230 231
|
syl |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → suc ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc 𝑐 ) |
| 233 |
219 232
|
eqtrd |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( 𝑛 +o suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc 𝑐 ) |
| 234 |
|
peano2 |
⊢ ( ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω → suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω ) |
| 235 |
217 234
|
syl |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω ) |
| 236 |
|
peano2 |
⊢ ( 𝑝 ∈ ω → suc 𝑝 ∈ ω ) |
| 237 |
|
nnasuc |
⊢ ( ( 𝑛 ∈ ω ∧ 𝑝 ∈ ω ) → ( 𝑛 +o suc 𝑝 ) = suc ( 𝑛 +o 𝑝 ) ) |
| 238 |
177 237
|
sylan |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ 𝑝 ∈ ω ) → ( 𝑛 +o suc 𝑝 ) = suc ( 𝑛 +o 𝑝 ) ) |
| 239 |
|
oveq2 |
⊢ ( 𝑞 = suc 𝑝 → ( 𝑛 +o 𝑞 ) = ( 𝑛 +o suc 𝑝 ) ) |
| 240 |
239
|
eqeq1d |
⊢ ( 𝑞 = suc 𝑝 → ( ( 𝑛 +o 𝑞 ) = suc ( 𝑛 +o 𝑝 ) ↔ ( 𝑛 +o suc 𝑝 ) = suc ( 𝑛 +o 𝑝 ) ) ) |
| 241 |
240
|
rspcev |
⊢ ( ( suc 𝑝 ∈ ω ∧ ( 𝑛 +o suc 𝑝 ) = suc ( 𝑛 +o 𝑝 ) ) → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc ( 𝑛 +o 𝑝 ) ) |
| 242 |
236 238 241
|
syl2an2 |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ 𝑝 ∈ ω ) → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc ( 𝑛 +o 𝑝 ) ) |
| 243 |
|
suceq |
⊢ ( ( 𝑛 +o 𝑝 ) = 𝑐 → suc ( 𝑛 +o 𝑝 ) = suc 𝑐 ) |
| 244 |
243
|
eqeq2d |
⊢ ( ( 𝑛 +o 𝑝 ) = 𝑐 → ( ( 𝑛 +o 𝑞 ) = suc ( 𝑛 +o 𝑝 ) ↔ ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) |
| 245 |
244
|
rexbidv |
⊢ ( ( 𝑛 +o 𝑝 ) = 𝑐 → ( ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc ( 𝑛 +o 𝑝 ) ↔ ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) |
| 246 |
242 245
|
syl5ibcom |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ 𝑝 ∈ ω ) → ( ( 𝑛 +o 𝑝 ) = 𝑐 → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) |
| 247 |
246
|
rexlimdva |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( ∃ 𝑝 ∈ ω ( 𝑛 +o 𝑝 ) = 𝑐 → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) |
| 248 |
170 247
|
mpd |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) |
| 249 |
|
nnasmo |
⊢ ( 𝑛 ∈ ω → ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) |
| 250 |
177 249
|
syl |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) |
| 251 |
|
reu5 |
⊢ ( ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ↔ ( ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ∧ ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) |
| 252 |
248 250 251
|
sylanbrc |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) |
| 253 |
221
|
nfsuc |
⊢ Ⅎ 𝑞 suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) |
| 254 |
222 223 253
|
nfov |
⊢ Ⅎ 𝑞 ( 𝑛 +o suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
| 255 |
254
|
nfeq1 |
⊢ Ⅎ 𝑞 ( 𝑛 +o suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc 𝑐 |
| 256 |
|
oveq2 |
⊢ ( 𝑞 = suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( 𝑛 +o 𝑞 ) = ( 𝑛 +o suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
| 257 |
256
|
eqeq1d |
⊢ ( 𝑞 = suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( ( 𝑛 +o 𝑞 ) = suc 𝑐 ↔ ( 𝑛 +o suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc 𝑐 ) ) |
| 258 |
253 255 257
|
riota2f |
⊢ ( ( suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω ∧ ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) → ( ( 𝑛 +o suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc 𝑐 ↔ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) = suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
| 259 |
235 252 258
|
syl2anc |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( ( 𝑛 +o suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc 𝑐 ↔ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) = suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
| 260 |
233 259
|
mpbid |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) = suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
| 261 |
260
|
fveq2d |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) = ( 𝑔 ‘ suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
| 262 |
199 215 261
|
3brtr4d |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) |
| 263 |
262
|
ex |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( 𝑛 ∈ 𝑐 → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
| 264 |
|
fveq2 |
⊢ ( 𝑏 = ∅ → ( 𝑔 ‘ 𝑏 ) = ( 𝑔 ‘ ∅ ) ) |
| 265 |
|
suceq |
⊢ ( 𝑏 = ∅ → suc 𝑏 = suc ∅ ) |
| 266 |
265 59
|
eqtr4di |
⊢ ( 𝑏 = ∅ → suc 𝑏 = 1o ) |
| 267 |
266
|
fveq2d |
⊢ ( 𝑏 = ∅ → ( 𝑔 ‘ suc 𝑏 ) = ( 𝑔 ‘ 1o ) ) |
| 268 |
264 267
|
breq12d |
⊢ ( 𝑏 = ∅ → ( ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ↔ ( 𝑔 ‘ ∅ ) 𝑅 ( 𝑔 ‘ 1o ) ) ) |
| 269 |
|
eldif |
⊢ ( 𝑚 ∈ ( ω ∖ 1o ) ↔ ( 𝑚 ∈ ω ∧ ¬ 𝑚 ∈ 1o ) ) |
| 270 |
|
nnord |
⊢ ( 𝑚 ∈ ω → Ord 𝑚 ) |
| 271 |
|
ordtri1 |
⊢ ( ( Ord 1o ∧ Ord 𝑚 ) → ( 1o ⊆ 𝑚 ↔ ¬ 𝑚 ∈ 1o ) ) |
| 272 |
8 270 271
|
sylancr |
⊢ ( 𝑚 ∈ ω → ( 1o ⊆ 𝑚 ↔ ¬ 𝑚 ∈ 1o ) ) |
| 273 |
272
|
biimpar |
⊢ ( ( 𝑚 ∈ ω ∧ ¬ 𝑚 ∈ 1o ) → 1o ⊆ 𝑚 ) |
| 274 |
269 273
|
sylbi |
⊢ ( 𝑚 ∈ ( ω ∖ 1o ) → 1o ⊆ 𝑚 ) |
| 275 |
274
|
adantl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → 1o ⊆ 𝑚 ) |
| 276 |
59 275
|
eqsstrrid |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → suc ∅ ⊆ 𝑚 ) |
| 277 |
|
0ex |
⊢ ∅ ∈ V |
| 278 |
113 270
|
syl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → Ord 𝑚 ) |
| 279 |
|
ordelsuc |
⊢ ( ( ∅ ∈ V ∧ Ord 𝑚 ) → ( ∅ ∈ 𝑚 ↔ suc ∅ ⊆ 𝑚 ) ) |
| 280 |
277 278 279
|
sylancr |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ∅ ∈ 𝑚 ↔ suc ∅ ⊆ 𝑚 ) ) |
| 281 |
276 280
|
mpbird |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ∅ ∈ 𝑚 ) |
| 282 |
281
|
adantr |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ∅ ∈ 𝑚 ) |
| 283 |
268 156 282
|
rspcdva |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑔 ‘ ∅ ) 𝑅 ( 𝑔 ‘ 1o ) ) |
| 284 |
|
simpl2r |
⊢ ( ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ( 𝑓 ‘ 𝑛 ) = 𝑧 ) |
| 285 |
|
simpr2l |
⊢ ( ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ( 𝑔 ‘ ∅ ) = 𝑧 ) |
| 286 |
284 285
|
eqtr4d |
⊢ ( ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ( 𝑓 ‘ 𝑛 ) = ( 𝑔 ‘ ∅ ) ) |
| 287 |
286
|
adantl |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑓 ‘ 𝑛 ) = ( 𝑔 ‘ ∅ ) ) |
| 288 |
|
nnon |
⊢ ( 𝑛 ∈ ω → 𝑛 ∈ On ) |
| 289 |
38 288
|
syl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → 𝑛 ∈ On ) |
| 290 |
|
oa1suc |
⊢ ( 𝑛 ∈ On → ( 𝑛 +o 1o ) = suc 𝑛 ) |
| 291 |
289 290
|
syl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( 𝑛 +o 1o ) = suc 𝑛 ) |
| 292 |
|
1onn |
⊢ 1o ∈ ω |
| 293 |
|
oveq2 |
⊢ ( 𝑞 = 1o → ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 1o ) ) |
| 294 |
293
|
eqeq1d |
⊢ ( 𝑞 = 1o → ( ( 𝑛 +o 𝑞 ) = suc 𝑛 ↔ ( 𝑛 +o 1o ) = suc 𝑛 ) ) |
| 295 |
294
|
rspcev |
⊢ ( ( 1o ∈ ω ∧ ( 𝑛 +o 1o ) = suc 𝑛 ) → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) |
| 296 |
292 291 295
|
sylancr |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) |
| 297 |
|
nnasmo |
⊢ ( 𝑛 ∈ ω → ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) |
| 298 |
38 297
|
syl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) |
| 299 |
|
reu5 |
⊢ ( ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ↔ ( ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ∧ ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) ) |
| 300 |
296 298 299
|
sylanbrc |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) |
| 301 |
294
|
riota2 |
⊢ ( ( 1o ∈ ω ∧ ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) → ( ( 𝑛 +o 1o ) = suc 𝑛 ↔ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) = 1o ) ) |
| 302 |
292 300 301
|
sylancr |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ( 𝑛 +o 1o ) = suc 𝑛 ↔ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) = 1o ) ) |
| 303 |
291 302
|
mpbid |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) = 1o ) |
| 304 |
303
|
adantr |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) = 1o ) |
| 305 |
304
|
fveq2d |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) ) = ( 𝑔 ‘ 1o ) ) |
| 306 |
283 287 305
|
3brtr4d |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑓 ‘ 𝑛 ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) ) ) |
| 307 |
201
|
sucid |
⊢ 𝑛 ∈ suc 𝑛 |
| 308 |
307
|
iftruei |
⊢ if ( 𝑛 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑛 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) = ( 𝑓 ‘ 𝑛 ) |
| 309 |
|
eleq1 |
⊢ ( 𝑛 = 𝑐 → ( 𝑛 ∈ suc 𝑛 ↔ 𝑐 ∈ suc 𝑛 ) ) |
| 310 |
|
fveq2 |
⊢ ( 𝑛 = 𝑐 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑐 ) ) |
| 311 |
309 310
|
ifbieq1d |
⊢ ( 𝑛 = 𝑐 → if ( 𝑛 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑛 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) = if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) ) |
| 312 |
308 311
|
eqtr3id |
⊢ ( 𝑛 = 𝑐 → ( 𝑓 ‘ 𝑛 ) = if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) ) |
| 313 |
|
suceq |
⊢ ( 𝑛 = 𝑐 → suc 𝑛 = suc 𝑐 ) |
| 314 |
313
|
eqeq2d |
⊢ ( 𝑛 = 𝑐 → ( ( 𝑛 +o 𝑞 ) = suc 𝑛 ↔ ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) |
| 315 |
314
|
riotabidv |
⊢ ( 𝑛 = 𝑐 → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) |
| 316 |
315
|
fveq2d |
⊢ ( 𝑛 = 𝑐 → ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) ) = ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) |
| 317 |
312 316
|
breq12d |
⊢ ( 𝑛 = 𝑐 → ( ( 𝑓 ‘ 𝑛 ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) ) ↔ if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
| 318 |
306 317
|
syl5ibcom |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑛 = 𝑐 → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
| 319 |
318
|
adantr |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( 𝑛 = 𝑐 → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
| 320 |
263 319
|
jaod |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( ( 𝑛 ∈ 𝑐 ∨ 𝑛 = 𝑐 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
| 321 |
151 320
|
syld |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( ¬ 𝑐 ∈ 𝑛 → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
| 322 |
321
|
imp |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ ¬ 𝑐 ∈ 𝑛 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) |
| 323 |
135
|
notbid |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ¬ 𝑐 ∈ 𝑛 ↔ ¬ suc 𝑐 ∈ suc 𝑛 ) ) |
| 324 |
323
|
adantr |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( ¬ 𝑐 ∈ 𝑛 ↔ ¬ suc 𝑐 ∈ suc 𝑛 ) ) |
| 325 |
324
|
adantr |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( ¬ 𝑐 ∈ 𝑛 ↔ ¬ suc 𝑐 ∈ suc 𝑛 ) ) |
| 326 |
325
|
biimpa |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ ¬ 𝑐 ∈ 𝑛 ) → ¬ suc 𝑐 ∈ suc 𝑛 ) |
| 327 |
326
|
iffalsed |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ ¬ 𝑐 ∈ 𝑛 ) → if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) = ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) |
| 328 |
322 327
|
breqtrrd |
⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ ¬ 𝑐 ∈ 𝑛 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
| 329 |
140 328
|
pm2.61dan |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
| 330 |
|
elelsuc |
⊢ ( 𝑐 ∈ ( 𝑛 +o 𝑚 ) → 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) ) |
| 331 |
330
|
adantl |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) ) |
| 332 |
|
eleq1 |
⊢ ( 𝑝 = 𝑐 → ( 𝑝 ∈ suc 𝑛 ↔ 𝑐 ∈ suc 𝑛 ) ) |
| 333 |
|
fveq2 |
⊢ ( 𝑝 = 𝑐 → ( 𝑓 ‘ 𝑝 ) = ( 𝑓 ‘ 𝑐 ) ) |
| 334 |
|
eqeq2 |
⊢ ( 𝑝 = 𝑐 → ( ( 𝑛 +o 𝑞 ) = 𝑝 ↔ ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
| 335 |
334
|
riotabidv |
⊢ ( 𝑝 = 𝑐 → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
| 336 |
335
|
fveq2d |
⊢ ( 𝑝 = 𝑐 → ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) = ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
| 337 |
332 333 336
|
ifbieq12d |
⊢ ( 𝑝 = 𝑐 → if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) = if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) ) |
| 338 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑐 ) ∈ V |
| 339 |
|
fvex |
⊢ ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ∈ V |
| 340 |
338 339
|
ifex |
⊢ if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) ∈ V |
| 341 |
337 32 340
|
fvmpt |
⊢ ( 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) = if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) ) |
| 342 |
331 341
|
syl |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) = if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) ) |
| 343 |
|
ordsucelsuc |
⊢ ( Ord ( 𝑛 +o 𝑚 ) → ( 𝑐 ∈ ( 𝑛 +o 𝑚 ) ↔ suc 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) ) ) |
| 344 |
19 343
|
syl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( 𝑐 ∈ ( 𝑛 +o 𝑚 ) ↔ suc 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) ) ) |
| 345 |
344
|
adantr |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑐 ∈ ( 𝑛 +o 𝑚 ) ↔ suc 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) ) ) |
| 346 |
345
|
biimpa |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → suc 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) ) |
| 347 |
|
eleq1 |
⊢ ( 𝑝 = suc 𝑐 → ( 𝑝 ∈ suc 𝑛 ↔ suc 𝑐 ∈ suc 𝑛 ) ) |
| 348 |
|
fveq2 |
⊢ ( 𝑝 = suc 𝑐 → ( 𝑓 ‘ 𝑝 ) = ( 𝑓 ‘ suc 𝑐 ) ) |
| 349 |
|
eqeq2 |
⊢ ( 𝑝 = suc 𝑐 → ( ( 𝑛 +o 𝑞 ) = 𝑝 ↔ ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) |
| 350 |
349
|
riotabidv |
⊢ ( 𝑝 = suc 𝑐 → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) |
| 351 |
350
|
fveq2d |
⊢ ( 𝑝 = suc 𝑐 → ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) = ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) |
| 352 |
347 348 351
|
ifbieq12d |
⊢ ( 𝑝 = suc 𝑐 → if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) = if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
| 353 |
|
fvex |
⊢ ( 𝑓 ‘ suc 𝑐 ) ∈ V |
| 354 |
|
fvex |
⊢ ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ∈ V |
| 355 |
353 354
|
ifex |
⊢ if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ∈ V |
| 356 |
352 32 355
|
fvmpt |
⊢ ( suc 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) = if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
| 357 |
346 356
|
syl |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) = if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
| 358 |
329 342 357
|
3brtr4d |
⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) ) |
| 359 |
358
|
ralrimiva |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) ) |
| 360 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑝 ) ∈ V |
| 361 |
|
fvex |
⊢ ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ∈ V |
| 362 |
360 361
|
ifex |
⊢ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ∈ V |
| 363 |
362 32
|
fnmpti |
⊢ ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) Fn suc ( 𝑛 +o 𝑚 ) |
| 364 |
46
|
sucex |
⊢ suc ( 𝑛 +o 𝑚 ) ∈ V |
| 365 |
364
|
mptex |
⊢ ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ∈ V |
| 366 |
|
fneq1 |
⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ℎ Fn suc ( 𝑛 +o 𝑚 ) ↔ ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) Fn suc ( 𝑛 +o 𝑚 ) ) ) |
| 367 |
|
fveq1 |
⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ℎ ‘ ∅ ) = ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) ) |
| 368 |
367
|
eqeq1d |
⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ( ℎ ‘ ∅ ) = 𝑥 ↔ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = 𝑥 ) ) |
| 369 |
|
fveq1 |
⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) ) |
| 370 |
369
|
eqeq1d |
⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ↔ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ) |
| 371 |
368 370
|
anbi12d |
⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ↔ ( ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = 𝑥 ∧ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ) ) |
| 372 |
|
fveq1 |
⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ℎ ‘ 𝑐 ) = ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) ) |
| 373 |
|
fveq1 |
⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ℎ ‘ suc 𝑐 ) = ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) ) |
| 374 |
372 373
|
breq12d |
⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ↔ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) ) ) |
| 375 |
374
|
ralbidv |
⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ↔ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) ) ) |
| 376 |
366 371 375
|
3anbi123d |
⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ( ℎ Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ↔ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = 𝑥 ∧ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) ) ) ) |
| 377 |
365 376
|
spcev |
⊢ ( ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = 𝑥 ∧ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) ) → ∃ ℎ ( ℎ Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) |
| 378 |
363 377
|
mp3an1 |
⊢ ( ( ( ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = 𝑥 ∧ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) ) → ∃ ℎ ( ℎ Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) |
| 379 |
45 123 359 378
|
syl21anc |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ∃ ℎ ( ℎ Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) |
| 380 |
|
suceq |
⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → suc 𝑝 = suc ( 𝑛 +o 𝑚 ) ) |
| 381 |
380
|
fneq2d |
⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( ℎ Fn suc 𝑝 ↔ ℎ Fn suc ( 𝑛 +o 𝑚 ) ) ) |
| 382 |
|
fveqeq2 |
⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( ( ℎ ‘ 𝑝 ) = 𝑦 ↔ ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ) |
| 383 |
382
|
anbi2d |
⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ↔ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ) ) |
| 384 |
|
raleq |
⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ↔ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) |
| 385 |
381 383 384
|
3anbi123d |
⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( ( ℎ Fn suc 𝑝 ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ↔ ( ℎ Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) ) |
| 386 |
385
|
exbidv |
⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( ∃ ℎ ( ℎ Fn suc 𝑝 ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ↔ ∃ ℎ ( ℎ Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) ) |
| 387 |
386
|
rspcev |
⊢ ( ( ( 𝑛 +o 𝑚 ) ∈ ( ω ∖ 1o ) ∧ ∃ ℎ ( ℎ Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) → ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ℎ ( ℎ Fn suc 𝑝 ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) |
| 388 |
23 379 387
|
syl2an2r |
⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ℎ ( ℎ Fn suc 𝑝 ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) |
| 389 |
388
|
ex |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ℎ ( ℎ Fn suc 𝑝 ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) ) |
| 390 |
389
|
exlimdvv |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ℎ ( ℎ Fn suc 𝑝 ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) ) |
| 391 |
390
|
rexlimivv |
⊢ ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ℎ ( ℎ Fn suc 𝑝 ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) |
| 392 |
391
|
exlimiv |
⊢ ( ∃ 𝑧 ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ℎ ( ℎ Fn suc 𝑝 ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) |
| 393 |
|
vex |
⊢ 𝑥 ∈ V |
| 394 |
|
vex |
⊢ 𝑦 ∈ V |
| 395 |
393 394
|
opelco |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( t++ 𝑅 ∘ t++ 𝑅 ) ↔ ∃ 𝑧 ( 𝑥 t++ 𝑅 𝑧 ∧ 𝑧 t++ 𝑅 𝑦 ) ) |
| 396 |
|
reeanv |
⊢ ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ( ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ∃ 𝑔 ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ↔ ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑔 ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
| 397 |
|
eeanv |
⊢ ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ∃ 𝑔 ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
| 398 |
397
|
2rexbii |
⊢ ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ↔ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ( ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ∃ 𝑔 ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
| 399 |
|
brttrcl |
⊢ ( 𝑥 t++ 𝑅 𝑧 ↔ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
| 400 |
|
brttrcl |
⊢ ( 𝑧 t++ 𝑅 𝑦 ↔ ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑔 ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) |
| 401 |
399 400
|
anbi12i |
⊢ ( ( 𝑥 t++ 𝑅 𝑧 ∧ 𝑧 t++ 𝑅 𝑦 ) ↔ ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑔 ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
| 402 |
396 398 401
|
3bitr4ri |
⊢ ( ( 𝑥 t++ 𝑅 𝑧 ∧ 𝑧 t++ 𝑅 𝑦 ) ↔ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
| 403 |
402
|
exbii |
⊢ ( ∃ 𝑧 ( 𝑥 t++ 𝑅 𝑧 ∧ 𝑧 t++ 𝑅 𝑦 ) ↔ ∃ 𝑧 ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
| 404 |
395 403
|
bitri |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( t++ 𝑅 ∘ t++ 𝑅 ) ↔ ∃ 𝑧 ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
| 405 |
|
df-br |
⊢ ( 𝑥 t++ 𝑅 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ t++ 𝑅 ) |
| 406 |
|
brttrcl |
⊢ ( 𝑥 t++ 𝑅 𝑦 ↔ ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ℎ ( ℎ Fn suc 𝑝 ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) |
| 407 |
405 406
|
bitr3i |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ t++ 𝑅 ↔ ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ℎ ( ℎ Fn suc 𝑝 ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) |
| 408 |
392 404 407
|
3imtr4i |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( t++ 𝑅 ∘ t++ 𝑅 ) → 〈 𝑥 , 𝑦 〉 ∈ t++ 𝑅 ) |
| 409 |
1 408
|
relssi |
⊢ ( t++ 𝑅 ∘ t++ 𝑅 ) ⊆ t++ 𝑅 |