Step |
Hyp |
Ref |
Expression |
1 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑎 ) ∈ V |
2 |
|
fvex |
⊢ ( 𝑓 ‘ suc 𝑎 ) ∈ V |
3 |
2
|
brresi |
⊢ ( ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ V ) ( 𝑓 ‘ suc 𝑎 ) ↔ ( ( 𝑓 ‘ 𝑎 ) ∈ V ∧ ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
4 |
1 3
|
mpbiran |
⊢ ( ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ V ) ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) |
5 |
4
|
ralbii |
⊢ ( ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ V ) ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) |
6 |
5
|
3anbi3i |
⊢ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ V ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
7 |
6
|
exbii |
⊢ ( ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ V ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
8 |
7
|
rexbii |
⊢ ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ V ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
9 |
8
|
opabbii |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ V ) ( 𝑓 ‘ suc 𝑎 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } |
10 |
|
df-ttrcl |
⊢ t++ ( 𝑅 ↾ V ) = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ V ) ( 𝑓 ‘ suc 𝑎 ) ) } |
11 |
|
df-ttrcl |
⊢ t++ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } |
12 |
9 10 11
|
3eqtr4i |
⊢ t++ ( 𝑅 ↾ V ) = t++ 𝑅 |