Metamath Proof Explorer


Theorem ttrclresv

Description: The transitive closure of R restricted to _V is the same as the transitive closure of R itself. (Contributed by Scott Fenton, 20-Oct-2024)

Ref Expression
Assertion ttrclresv t++ ( 𝑅 ↾ V ) = t++ 𝑅

Proof

Step Hyp Ref Expression
1 fvex ( 𝑓𝑎 ) ∈ V
2 fvex ( 𝑓 ‘ suc 𝑎 ) ∈ V
3 2 brresi ( ( 𝑓𝑎 ) ( 𝑅 ↾ V ) ( 𝑓 ‘ suc 𝑎 ) ↔ ( ( 𝑓𝑎 ) ∈ V ∧ ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) )
4 1 3 mpbiran ( ( 𝑓𝑎 ) ( 𝑅 ↾ V ) ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) )
5 4 ralbii ( ∀ 𝑎𝑛 ( 𝑓𝑎 ) ( 𝑅 ↾ V ) ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) )
6 5 3anbi3i ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑦 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) ( 𝑅 ↾ V ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑦 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) )
7 6 exbii ( ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑦 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) ( 𝑅 ↾ V ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑦 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) )
8 7 rexbii ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑦 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) ( 𝑅 ↾ V ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑦 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) )
9 8 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑦 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) ( 𝑅 ↾ V ) ( 𝑓 ‘ suc 𝑎 ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑦 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) }
10 df-ttrcl t++ ( 𝑅 ↾ V ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑦 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) ( 𝑅 ↾ V ) ( 𝑓 ‘ suc 𝑎 ) ) }
11 df-ttrcl t++ 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑦 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) }
12 9 10 11 3eqtr4i t++ ( 𝑅 ↾ V ) = t++ 𝑅