Step |
Hyp |
Ref |
Expression |
1 |
|
fvex |
|- ( f ` a ) e. _V |
2 |
|
fvex |
|- ( f ` suc a ) e. _V |
3 |
2
|
brresi |
|- ( ( f ` a ) ( R |` _V ) ( f ` suc a ) <-> ( ( f ` a ) e. _V /\ ( f ` a ) R ( f ` suc a ) ) ) |
4 |
1 3
|
mpbiran |
|- ( ( f ` a ) ( R |` _V ) ( f ` suc a ) <-> ( f ` a ) R ( f ` suc a ) ) |
5 |
4
|
ralbii |
|- ( A. a e. n ( f ` a ) ( R |` _V ) ( f ` suc a ) <-> A. a e. n ( f ` a ) R ( f ` suc a ) ) |
6 |
5
|
3anbi3i |
|- ( ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) ( R |` _V ) ( f ` suc a ) ) <-> ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) |
7 |
6
|
exbii |
|- ( E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) ( R |` _V ) ( f ` suc a ) ) <-> E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) |
8 |
7
|
rexbii |
|- ( E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) ( R |` _V ) ( f ` suc a ) ) <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) |
9 |
8
|
opabbii |
|- { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) ( R |` _V ) ( f ` suc a ) ) } = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } |
10 |
|
df-ttrcl |
|- t++ ( R |` _V ) = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) ( R |` _V ) ( f ` suc a ) ) } |
11 |
|
df-ttrcl |
|- t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } |
12 |
9 10 11
|
3eqtr4i |
|- t++ ( R |` _V ) = t++ R |