Step |
Hyp |
Ref |
Expression |
1 |
|
relres |
|- Rel ( R |` _V ) |
2 |
|
ssttrcl |
|- ( Rel ( R |` _V ) -> ( R |` _V ) C_ t++ ( R |` _V ) ) |
3 |
|
coss2 |
|- ( ( R |` _V ) C_ t++ ( R |` _V ) -> ( t++ ( R |` _V ) o. ( R |` _V ) ) C_ ( t++ ( R |` _V ) o. t++ ( R |` _V ) ) ) |
4 |
1 2 3
|
mp2b |
|- ( t++ ( R |` _V ) o. ( R |` _V ) ) C_ ( t++ ( R |` _V ) o. t++ ( R |` _V ) ) |
5 |
|
ttrcltr |
|- ( t++ ( R |` _V ) o. t++ ( R |` _V ) ) C_ t++ ( R |` _V ) |
6 |
4 5
|
sstri |
|- ( t++ ( R |` _V ) o. ( R |` _V ) ) C_ t++ ( R |` _V ) |
7 |
|
relco |
|- Rel ( t++ ( R |` _V ) o. R ) |
8 |
|
dfrel3 |
|- ( Rel ( t++ ( R |` _V ) o. R ) <-> ( ( t++ ( R |` _V ) o. R ) |` _V ) = ( t++ ( R |` _V ) o. R ) ) |
9 |
7 8
|
mpbi |
|- ( ( t++ ( R |` _V ) o. R ) |` _V ) = ( t++ ( R |` _V ) o. R ) |
10 |
|
resco |
|- ( ( t++ ( R |` _V ) o. R ) |` _V ) = ( t++ ( R |` _V ) o. ( R |` _V ) ) |
11 |
|
ttrclresv |
|- t++ ( R |` _V ) = t++ R |
12 |
11
|
coeq1i |
|- ( t++ ( R |` _V ) o. R ) = ( t++ R o. R ) |
13 |
9 10 12
|
3eqtr3i |
|- ( t++ ( R |` _V ) o. ( R |` _V ) ) = ( t++ R o. R ) |
14 |
6 13 11
|
3sstr3i |
|- ( t++ R o. R ) C_ t++ R |