| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relres |
|- Rel ( R |` _V ) |
| 2 |
|
ssttrcl |
|- ( Rel ( R |` _V ) -> ( R |` _V ) C_ t++ ( R |` _V ) ) |
| 3 |
|
coss2 |
|- ( ( R |` _V ) C_ t++ ( R |` _V ) -> ( t++ ( R |` _V ) o. ( R |` _V ) ) C_ ( t++ ( R |` _V ) o. t++ ( R |` _V ) ) ) |
| 4 |
1 2 3
|
mp2b |
|- ( t++ ( R |` _V ) o. ( R |` _V ) ) C_ ( t++ ( R |` _V ) o. t++ ( R |` _V ) ) |
| 5 |
|
ttrcltr |
|- ( t++ ( R |` _V ) o. t++ ( R |` _V ) ) C_ t++ ( R |` _V ) |
| 6 |
4 5
|
sstri |
|- ( t++ ( R |` _V ) o. ( R |` _V ) ) C_ t++ ( R |` _V ) |
| 7 |
|
relco |
|- Rel ( t++ ( R |` _V ) o. R ) |
| 8 |
|
dfrel3 |
|- ( Rel ( t++ ( R |` _V ) o. R ) <-> ( ( t++ ( R |` _V ) o. R ) |` _V ) = ( t++ ( R |` _V ) o. R ) ) |
| 9 |
7 8
|
mpbi |
|- ( ( t++ ( R |` _V ) o. R ) |` _V ) = ( t++ ( R |` _V ) o. R ) |
| 10 |
|
resco |
|- ( ( t++ ( R |` _V ) o. R ) |` _V ) = ( t++ ( R |` _V ) o. ( R |` _V ) ) |
| 11 |
|
ttrclresv |
|- t++ ( R |` _V ) = t++ R |
| 12 |
11
|
coeq1i |
|- ( t++ ( R |` _V ) o. R ) = ( t++ R o. R ) |
| 13 |
9 10 12
|
3eqtr3i |
|- ( t++ ( R |` _V ) o. ( R |` _V ) ) = ( t++ R o. R ) |
| 14 |
6 13 11
|
3sstr3i |
|- ( t++ R o. R ) C_ t++ R |