Description: Alternate definition of relation. (Contributed by NM, 14-May-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfrel3 | |- ( Rel R <-> ( R |` _V ) = R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrel2 | |- ( Rel R <-> `' `' R = R ) |
|
| 2 | cnvcnv2 | |- `' `' R = ( R |` _V ) |
|
| 3 | 2 | eqeq1i | |- ( `' `' R = R <-> ( R |` _V ) = R ) |
| 4 | 1 3 | bitri | |- ( Rel R <-> ( R |` _V ) = R ) |