Step |
Hyp |
Ref |
Expression |
1 |
|
relres |
|- Rel ( R |` _V ) |
2 |
|
ssttrcl |
|- ( Rel ( R |` _V ) -> ( R |` _V ) C_ t++ ( R |` _V ) ) |
3 |
1 2
|
ax-mp |
|- ( R |` _V ) C_ t++ ( R |` _V ) |
4 |
|
coss1 |
|- ( ( R |` _V ) C_ t++ ( R |` _V ) -> ( ( R |` _V ) o. t++ ( R |` _V ) ) C_ ( t++ ( R |` _V ) o. t++ ( R |` _V ) ) ) |
5 |
3 4
|
ax-mp |
|- ( ( R |` _V ) o. t++ ( R |` _V ) ) C_ ( t++ ( R |` _V ) o. t++ ( R |` _V ) ) |
6 |
|
ttrcltr |
|- ( t++ ( R |` _V ) o. t++ ( R |` _V ) ) C_ t++ ( R |` _V ) |
7 |
5 6
|
sstri |
|- ( ( R |` _V ) o. t++ ( R |` _V ) ) C_ t++ ( R |` _V ) |
8 |
|
ssv |
|- ran t++ ( R |` _V ) C_ _V |
9 |
|
cores |
|- ( ran t++ ( R |` _V ) C_ _V -> ( ( R |` _V ) o. t++ ( R |` _V ) ) = ( R o. t++ ( R |` _V ) ) ) |
10 |
8 9
|
ax-mp |
|- ( ( R |` _V ) o. t++ ( R |` _V ) ) = ( R o. t++ ( R |` _V ) ) |
11 |
|
ttrclresv |
|- t++ ( R |` _V ) = t++ R |
12 |
11
|
coeq2i |
|- ( R o. t++ ( R |` _V ) ) = ( R o. t++ R ) |
13 |
10 12
|
eqtri |
|- ( ( R |` _V ) o. t++ ( R |` _V ) ) = ( R o. t++ R ) |
14 |
7 13 11
|
3sstr3i |
|- ( R o. t++ R ) C_ t++ R |