Metamath Proof Explorer


Theorem cottrcl

Description: Composition law for the transitive closure of a relationship. (Contributed by Scott Fenton, 20-Oct-2024)

Ref Expression
Assertion cottrcl Could not format assertion : No typesetting found for |- ( R o. t++ R ) C_ t++ R with typecode |-

Proof

Step Hyp Ref Expression
1 relres Rel R V
2 ssttrcl Could not format ( Rel ( R |` _V ) -> ( R |` _V ) C_ t++ ( R |` _V ) ) : No typesetting found for |- ( Rel ( R |` _V ) -> ( R |` _V ) C_ t++ ( R |` _V ) ) with typecode |-
3 1 2 ax-mp Could not format ( R |` _V ) C_ t++ ( R |` _V ) : No typesetting found for |- ( R |` _V ) C_ t++ ( R |` _V ) with typecode |-
4 coss1 Could not format ( ( R |` _V ) C_ t++ ( R |` _V ) -> ( ( R |` _V ) o. t++ ( R |` _V ) ) C_ ( t++ ( R |` _V ) o. t++ ( R |` _V ) ) ) : No typesetting found for |- ( ( R |` _V ) C_ t++ ( R |` _V ) -> ( ( R |` _V ) o. t++ ( R |` _V ) ) C_ ( t++ ( R |` _V ) o. t++ ( R |` _V ) ) ) with typecode |-
5 3 4 ax-mp Could not format ( ( R |` _V ) o. t++ ( R |` _V ) ) C_ ( t++ ( R |` _V ) o. t++ ( R |` _V ) ) : No typesetting found for |- ( ( R |` _V ) o. t++ ( R |` _V ) ) C_ ( t++ ( R |` _V ) o. t++ ( R |` _V ) ) with typecode |-
6 ttrcltr Could not format ( t++ ( R |` _V ) o. t++ ( R |` _V ) ) C_ t++ ( R |` _V ) : No typesetting found for |- ( t++ ( R |` _V ) o. t++ ( R |` _V ) ) C_ t++ ( R |` _V ) with typecode |-
7 5 6 sstri Could not format ( ( R |` _V ) o. t++ ( R |` _V ) ) C_ t++ ( R |` _V ) : No typesetting found for |- ( ( R |` _V ) o. t++ ( R |` _V ) ) C_ t++ ( R |` _V ) with typecode |-
8 ssv Could not format ran t++ ( R |` _V ) C_ _V : No typesetting found for |- ran t++ ( R |` _V ) C_ _V with typecode |-
9 cores Could not format ( ran t++ ( R |` _V ) C_ _V -> ( ( R |` _V ) o. t++ ( R |` _V ) ) = ( R o. t++ ( R |` _V ) ) ) : No typesetting found for |- ( ran t++ ( R |` _V ) C_ _V -> ( ( R |` _V ) o. t++ ( R |` _V ) ) = ( R o. t++ ( R |` _V ) ) ) with typecode |-
10 8 9 ax-mp Could not format ( ( R |` _V ) o. t++ ( R |` _V ) ) = ( R o. t++ ( R |` _V ) ) : No typesetting found for |- ( ( R |` _V ) o. t++ ( R |` _V ) ) = ( R o. t++ ( R |` _V ) ) with typecode |-
11 ttrclresv Could not format t++ ( R |` _V ) = t++ R : No typesetting found for |- t++ ( R |` _V ) = t++ R with typecode |-
12 11 coeq2i Could not format ( R o. t++ ( R |` _V ) ) = ( R o. t++ R ) : No typesetting found for |- ( R o. t++ ( R |` _V ) ) = ( R o. t++ R ) with typecode |-
13 10 12 eqtri Could not format ( ( R |` _V ) o. t++ ( R |` _V ) ) = ( R o. t++ R ) : No typesetting found for |- ( ( R |` _V ) o. t++ ( R |` _V ) ) = ( R o. t++ R ) with typecode |-
14 7 13 11 3sstr3i Could not format ( R o. t++ R ) C_ t++ R : No typesetting found for |- ( R o. t++ R ) C_ t++ R with typecode |-