| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relres |
⊢ Rel ( 𝑅 ↾ V ) |
| 2 |
|
ssttrcl |
⊢ ( Rel ( 𝑅 ↾ V ) → ( 𝑅 ↾ V ) ⊆ t++ ( 𝑅 ↾ V ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ( 𝑅 ↾ V ) ⊆ t++ ( 𝑅 ↾ V ) |
| 4 |
|
coss1 |
⊢ ( ( 𝑅 ↾ V ) ⊆ t++ ( 𝑅 ↾ V ) → ( ( 𝑅 ↾ V ) ∘ t++ ( 𝑅 ↾ V ) ) ⊆ ( t++ ( 𝑅 ↾ V ) ∘ t++ ( 𝑅 ↾ V ) ) ) |
| 5 |
3 4
|
ax-mp |
⊢ ( ( 𝑅 ↾ V ) ∘ t++ ( 𝑅 ↾ V ) ) ⊆ ( t++ ( 𝑅 ↾ V ) ∘ t++ ( 𝑅 ↾ V ) ) |
| 6 |
|
ttrcltr |
⊢ ( t++ ( 𝑅 ↾ V ) ∘ t++ ( 𝑅 ↾ V ) ) ⊆ t++ ( 𝑅 ↾ V ) |
| 7 |
5 6
|
sstri |
⊢ ( ( 𝑅 ↾ V ) ∘ t++ ( 𝑅 ↾ V ) ) ⊆ t++ ( 𝑅 ↾ V ) |
| 8 |
|
ssv |
⊢ ran t++ ( 𝑅 ↾ V ) ⊆ V |
| 9 |
|
cores |
⊢ ( ran t++ ( 𝑅 ↾ V ) ⊆ V → ( ( 𝑅 ↾ V ) ∘ t++ ( 𝑅 ↾ V ) ) = ( 𝑅 ∘ t++ ( 𝑅 ↾ V ) ) ) |
| 10 |
8 9
|
ax-mp |
⊢ ( ( 𝑅 ↾ V ) ∘ t++ ( 𝑅 ↾ V ) ) = ( 𝑅 ∘ t++ ( 𝑅 ↾ V ) ) |
| 11 |
|
ttrclresv |
⊢ t++ ( 𝑅 ↾ V ) = t++ 𝑅 |
| 12 |
11
|
coeq2i |
⊢ ( 𝑅 ∘ t++ ( 𝑅 ↾ V ) ) = ( 𝑅 ∘ t++ 𝑅 ) |
| 13 |
10 12
|
eqtri |
⊢ ( ( 𝑅 ↾ V ) ∘ t++ ( 𝑅 ↾ V ) ) = ( 𝑅 ∘ t++ 𝑅 ) |
| 14 |
7 13 11
|
3sstr3i |
⊢ ( 𝑅 ∘ t++ 𝑅 ) ⊆ t++ 𝑅 |