Step |
Hyp |
Ref |
Expression |
1 |
|
suceq |
⊢ ( 𝑚 = ∅ → suc 𝑚 = suc ∅ ) |
2 |
|
suceq |
⊢ ( suc 𝑚 = suc ∅ → suc suc 𝑚 = suc suc ∅ ) |
3 |
1 2
|
syl |
⊢ ( 𝑚 = ∅ → suc suc 𝑚 = suc suc ∅ ) |
4 |
3
|
fneq2d |
⊢ ( 𝑚 = ∅ → ( 𝑓 Fn suc suc 𝑚 ↔ 𝑓 Fn suc suc ∅ ) ) |
5 |
|
df-1o |
⊢ 1o = suc ∅ |
6 |
1 5
|
eqtr4di |
⊢ ( 𝑚 = ∅ → suc 𝑚 = 1o ) |
7 |
6
|
fveqeq2d |
⊢ ( 𝑚 = ∅ → ( ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ↔ ( 𝑓 ‘ 1o ) = 𝑦 ) ) |
8 |
7
|
anbi2d |
⊢ ( 𝑚 = ∅ → ( ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) ) ) |
9 |
|
df1o2 |
⊢ 1o = { ∅ } |
10 |
6 9
|
eqtrdi |
⊢ ( 𝑚 = ∅ → suc 𝑚 = { ∅ } ) |
11 |
10
|
raleqdv |
⊢ ( 𝑚 = ∅ → ( ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑎 ∈ { ∅ } ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
12 |
|
0ex |
⊢ ∅ ∈ V |
13 |
|
fveq2 |
⊢ ( 𝑎 = ∅ → ( 𝑓 ‘ 𝑎 ) = ( 𝑓 ‘ ∅ ) ) |
14 |
|
suceq |
⊢ ( 𝑎 = ∅ → suc 𝑎 = suc ∅ ) |
15 |
14 5
|
eqtr4di |
⊢ ( 𝑎 = ∅ → suc 𝑎 = 1o ) |
16 |
15
|
fveq2d |
⊢ ( 𝑎 = ∅ → ( 𝑓 ‘ suc 𝑎 ) = ( 𝑓 ‘ 1o ) ) |
17 |
13 16
|
breq12d |
⊢ ( 𝑎 = ∅ → ( ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) ) |
18 |
12 17
|
ralsn |
⊢ ( ∀ 𝑎 ∈ { ∅ } ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) |
19 |
11 18
|
bitrdi |
⊢ ( 𝑚 = ∅ → ( ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) ) |
20 |
4 8 19
|
3anbi123d |
⊢ ( 𝑚 = ∅ → ( ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( 𝑓 Fn suc suc ∅ ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) ∧ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) ) ) |
21 |
20
|
exbidv |
⊢ ( 𝑚 = ∅ → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc suc ∅ ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) ∧ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) ) ) |
22 |
21
|
imbi1d |
⊢ ( 𝑚 = ∅ → ( ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc suc ∅ ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) ∧ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) → 𝑥 𝑆 𝑦 ) ) ) |
23 |
22
|
albidv |
⊢ ( 𝑚 = ∅ → ( ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ↔ ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc ∅ ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) ∧ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) → 𝑥 𝑆 𝑦 ) ) ) |
24 |
23
|
imbi2d |
⊢ ( 𝑚 = ∅ → ( ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ↔ ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc ∅ ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) ∧ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) → 𝑥 𝑆 𝑦 ) ) ) ) |
25 |
|
suceq |
⊢ ( 𝑚 = 𝑖 → suc 𝑚 = suc 𝑖 ) |
26 |
|
suceq |
⊢ ( suc 𝑚 = suc 𝑖 → suc suc 𝑚 = suc suc 𝑖 ) |
27 |
25 26
|
syl |
⊢ ( 𝑚 = 𝑖 → suc suc 𝑚 = suc suc 𝑖 ) |
28 |
27
|
fneq2d |
⊢ ( 𝑚 = 𝑖 → ( 𝑓 Fn suc suc 𝑚 ↔ 𝑓 Fn suc suc 𝑖 ) ) |
29 |
25
|
fveqeq2d |
⊢ ( 𝑚 = 𝑖 → ( ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ↔ ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ) ) |
30 |
29
|
anbi2d |
⊢ ( 𝑚 = 𝑖 → ( ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ) ) ) |
31 |
25
|
raleqdv |
⊢ ( 𝑚 = 𝑖 → ( ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑎 ∈ suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
32 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝑓 ‘ 𝑎 ) = ( 𝑓 ‘ 𝑏 ) ) |
33 |
|
suceq |
⊢ ( 𝑎 = 𝑏 → suc 𝑎 = suc 𝑏 ) |
34 |
33
|
fveq2d |
⊢ ( 𝑎 = 𝑏 → ( 𝑓 ‘ suc 𝑎 ) = ( 𝑓 ‘ suc 𝑏 ) ) |
35 |
32 34
|
breq12d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ 𝑏 ) 𝑅 ( 𝑓 ‘ suc 𝑏 ) ) ) |
36 |
35
|
cbvralvw |
⊢ ( ∀ 𝑎 ∈ suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑏 ∈ suc 𝑖 ( 𝑓 ‘ 𝑏 ) 𝑅 ( 𝑓 ‘ suc 𝑏 ) ) |
37 |
31 36
|
bitrdi |
⊢ ( 𝑚 = 𝑖 → ( ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑏 ∈ suc 𝑖 ( 𝑓 ‘ 𝑏 ) 𝑅 ( 𝑓 ‘ suc 𝑏 ) ) ) |
38 |
28 30 37
|
3anbi123d |
⊢ ( 𝑚 = 𝑖 → ( ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( 𝑓 Fn suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑓 ‘ 𝑏 ) 𝑅 ( 𝑓 ‘ suc 𝑏 ) ) ) ) |
39 |
38
|
exbidv |
⊢ ( 𝑚 = 𝑖 → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑓 ‘ 𝑏 ) 𝑅 ( 𝑓 ‘ suc 𝑏 ) ) ) ) |
40 |
|
fneq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 Fn suc suc 𝑖 ↔ 𝑔 Fn suc suc 𝑖 ) ) |
41 |
|
fveq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ ∅ ) = ( 𝑔 ‘ ∅ ) ) |
42 |
41
|
eqeq1d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ‘ ∅ ) = 𝑥 ↔ ( 𝑔 ‘ ∅ ) = 𝑥 ) ) |
43 |
|
fveq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ suc 𝑖 ) = ( 𝑔 ‘ suc 𝑖 ) ) |
44 |
43
|
eqeq1d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ↔ ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ) ) |
45 |
42 44
|
anbi12d |
⊢ ( 𝑓 = 𝑔 → ( ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ) ↔ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ) ) ) |
46 |
|
fveq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ 𝑏 ) = ( 𝑔 ‘ 𝑏 ) ) |
47 |
|
fveq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ suc 𝑏 ) = ( 𝑔 ‘ suc 𝑏 ) ) |
48 |
46 47
|
breq12d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ‘ 𝑏 ) 𝑅 ( 𝑓 ‘ suc 𝑏 ) ↔ ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) |
49 |
48
|
ralbidv |
⊢ ( 𝑓 = 𝑔 → ( ∀ 𝑏 ∈ suc 𝑖 ( 𝑓 ‘ 𝑏 ) 𝑅 ( 𝑓 ‘ suc 𝑏 ) ↔ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) |
50 |
40 45 49
|
3anbi123d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 Fn suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑓 ‘ 𝑏 ) 𝑅 ( 𝑓 ‘ suc 𝑏 ) ) ↔ ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
51 |
50
|
cbvexvw |
⊢ ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑓 ‘ 𝑏 ) 𝑅 ( 𝑓 ‘ suc 𝑏 ) ) ↔ ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) |
52 |
39 51
|
bitrdi |
⊢ ( 𝑚 = 𝑖 → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
53 |
52
|
imbi1d |
⊢ ( 𝑚 = 𝑖 → ( ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ↔ ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑦 ) ) ) |
54 |
53
|
albidv |
⊢ ( 𝑚 = 𝑖 → ( ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ↔ ∀ 𝑦 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑦 ) ) ) |
55 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ↔ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ) |
56 |
55
|
anbi2d |
⊢ ( 𝑦 = 𝑧 → ( ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ) ↔ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ) ) |
57 |
56
|
3anbi2d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ↔ ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
58 |
57
|
exbidv |
⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ↔ ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
59 |
|
breq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 𝑆 𝑦 ↔ 𝑥 𝑆 𝑧 ) ) |
60 |
58 59
|
imbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑦 ) ↔ ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑧 ) ) ) |
61 |
60
|
cbvalvw |
⊢ ( ∀ 𝑦 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑦 ) ↔ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑧 ) ) |
62 |
54 61
|
bitrdi |
⊢ ( 𝑚 = 𝑖 → ( ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ↔ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑧 ) ) ) |
63 |
62
|
imbi2d |
⊢ ( 𝑚 = 𝑖 → ( ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ↔ ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑧 ) ) ) ) |
64 |
|
suceq |
⊢ ( 𝑚 = suc 𝑖 → suc 𝑚 = suc suc 𝑖 ) |
65 |
|
suceq |
⊢ ( suc 𝑚 = suc suc 𝑖 → suc suc 𝑚 = suc suc suc 𝑖 ) |
66 |
64 65
|
syl |
⊢ ( 𝑚 = suc 𝑖 → suc suc 𝑚 = suc suc suc 𝑖 ) |
67 |
66
|
fneq2d |
⊢ ( 𝑚 = suc 𝑖 → ( 𝑓 Fn suc suc 𝑚 ↔ 𝑓 Fn suc suc suc 𝑖 ) ) |
68 |
64
|
fveqeq2d |
⊢ ( 𝑚 = suc 𝑖 → ( ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ↔ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ) |
69 |
68
|
anbi2d |
⊢ ( 𝑚 = suc 𝑖 → ( ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ) ) |
70 |
64
|
raleqdv |
⊢ ( 𝑚 = suc 𝑖 → ( ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
71 |
67 69 70
|
3anbi123d |
⊢ ( 𝑚 = suc 𝑖 → ( ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
72 |
71
|
exbidv |
⊢ ( 𝑚 = suc 𝑖 → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
73 |
72
|
imbi1d |
⊢ ( 𝑚 = suc 𝑖 → ( ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ) |
74 |
73
|
albidv |
⊢ ( 𝑚 = suc 𝑖 → ( ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ↔ ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ) |
75 |
74
|
imbi2d |
⊢ ( 𝑚 = suc 𝑖 → ( ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ↔ ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ) ) |
76 |
|
suceq |
⊢ ( 𝑚 = 𝑛 → suc 𝑚 = suc 𝑛 ) |
77 |
|
suceq |
⊢ ( suc 𝑚 = suc 𝑛 → suc suc 𝑚 = suc suc 𝑛 ) |
78 |
76 77
|
syl |
⊢ ( 𝑚 = 𝑛 → suc suc 𝑚 = suc suc 𝑛 ) |
79 |
78
|
fneq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑓 Fn suc suc 𝑚 ↔ 𝑓 Fn suc suc 𝑛 ) ) |
80 |
76
|
fveqeq2d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ↔ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ) |
81 |
80
|
anbi2d |
⊢ ( 𝑚 = 𝑛 → ( ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ) ) |
82 |
76
|
raleqdv |
⊢ ( 𝑚 = 𝑛 → ( ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
83 |
79 81 82
|
3anbi123d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
84 |
83
|
exbidv |
⊢ ( 𝑚 = 𝑛 → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
85 |
84
|
imbi1d |
⊢ ( 𝑚 = 𝑛 → ( ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ) |
86 |
85
|
albidv |
⊢ ( 𝑚 = 𝑛 → ( ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ↔ ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ) |
87 |
86
|
imbi2d |
⊢ ( 𝑚 = 𝑛 → ( ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ↔ ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ) ) |
88 |
|
breq12 |
⊢ ( ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) → ( ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ↔ 𝑥 𝑅 𝑦 ) ) |
89 |
88
|
biimpa |
⊢ ( ( ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) ∧ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) → 𝑥 𝑅 𝑦 ) |
90 |
89
|
3adant1 |
⊢ ( ( 𝑓 Fn suc suc ∅ ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) ∧ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) → 𝑥 𝑅 𝑦 ) |
91 |
|
ssbr |
⊢ ( 𝑅 ⊆ 𝑆 → ( 𝑥 𝑅 𝑦 → 𝑥 𝑆 𝑦 ) ) |
92 |
91
|
adantr |
⊢ ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ( 𝑥 𝑅 𝑦 → 𝑥 𝑆 𝑦 ) ) |
93 |
90 92
|
syl5 |
⊢ ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ( ( 𝑓 Fn suc suc ∅ ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) ∧ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) → 𝑥 𝑆 𝑦 ) ) |
94 |
93
|
exlimdv |
⊢ ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ( ∃ 𝑓 ( 𝑓 Fn suc suc ∅ ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) ∧ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) → 𝑥 𝑆 𝑦 ) ) |
95 |
94
|
alrimiv |
⊢ ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc ∅ ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) ∧ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) → 𝑥 𝑆 𝑦 ) ) |
96 |
|
fvex |
⊢ ( 𝑓 ‘ suc 𝑖 ) ∈ V |
97 |
|
eqeq2 |
⊢ ( 𝑧 = ( 𝑓 ‘ suc 𝑖 ) → ( ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ↔ ( 𝑔 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ) |
98 |
97
|
anbi2d |
⊢ ( 𝑧 = ( 𝑓 ‘ suc 𝑖 ) → ( ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ↔ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ) ) |
99 |
98
|
3anbi2d |
⊢ ( 𝑧 = ( 𝑓 ‘ suc 𝑖 ) → ( ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ↔ ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
100 |
99
|
exbidv |
⊢ ( 𝑧 = ( 𝑓 ‘ suc 𝑖 ) → ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ↔ ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
101 |
|
breq2 |
⊢ ( 𝑧 = ( 𝑓 ‘ suc 𝑖 ) → ( 𝑥 𝑆 𝑧 ↔ 𝑥 𝑆 ( 𝑓 ‘ suc 𝑖 ) ) ) |
102 |
100 101
|
imbi12d |
⊢ ( 𝑧 = ( 𝑓 ‘ suc 𝑖 ) → ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑧 ) ↔ ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 ( 𝑓 ‘ suc 𝑖 ) ) ) ) |
103 |
96 102
|
spcv |
⊢ ( ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑧 ) → ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 ( 𝑓 ‘ suc 𝑖 ) ) ) |
104 |
|
simpr1 |
⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → 𝑓 Fn suc suc suc 𝑖 ) |
105 |
|
sssucid |
⊢ suc suc 𝑖 ⊆ suc suc suc 𝑖 |
106 |
|
fnssres |
⊢ ( ( 𝑓 Fn suc suc suc 𝑖 ∧ suc suc 𝑖 ⊆ suc suc suc 𝑖 ) → ( 𝑓 ↾ suc suc 𝑖 ) Fn suc suc 𝑖 ) |
107 |
104 105 106
|
sylancl |
⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ↾ suc suc 𝑖 ) Fn suc suc 𝑖 ) |
108 |
|
peano2 |
⊢ ( 𝑖 ∈ ω → suc 𝑖 ∈ ω ) |
109 |
108
|
ad2antrr |
⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → suc 𝑖 ∈ ω ) |
110 |
|
nnord |
⊢ ( suc 𝑖 ∈ ω → Ord suc 𝑖 ) |
111 |
109 110
|
syl |
⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → Ord suc 𝑖 ) |
112 |
|
0elsuc |
⊢ ( Ord suc 𝑖 → ∅ ∈ suc suc 𝑖 ) |
113 |
111 112
|
syl |
⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ∅ ∈ suc suc 𝑖 ) |
114 |
113
|
fvresd |
⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ ∅ ) = ( 𝑓 ‘ ∅ ) ) |
115 |
|
simpr2l |
⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ ∅ ) = 𝑥 ) |
116 |
114 115
|
eqtrd |
⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ ∅ ) = 𝑥 ) |
117 |
|
vex |
⊢ 𝑖 ∈ V |
118 |
117
|
sucex |
⊢ suc 𝑖 ∈ V |
119 |
118
|
sucid |
⊢ suc 𝑖 ∈ suc suc 𝑖 |
120 |
|
fvres |
⊢ ( suc 𝑖 ∈ suc suc 𝑖 → ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) |
121 |
119 120
|
mp1i |
⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) |
122 |
|
simplr3 |
⊢ ( ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑏 ∈ suc 𝑖 ) → ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) |
123 |
|
elelsuc |
⊢ ( 𝑏 ∈ suc 𝑖 → 𝑏 ∈ suc suc 𝑖 ) |
124 |
123
|
adantl |
⊢ ( ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑏 ∈ suc 𝑖 ) → 𝑏 ∈ suc suc 𝑖 ) |
125 |
35 122 124
|
rspcdva |
⊢ ( ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑏 ∈ suc 𝑖 ) → ( 𝑓 ‘ 𝑏 ) 𝑅 ( 𝑓 ‘ suc 𝑏 ) ) |
126 |
124
|
fvresd |
⊢ ( ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑏 ∈ suc 𝑖 ) → ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ 𝑏 ) = ( 𝑓 ‘ 𝑏 ) ) |
127 |
|
ordsucelsuc |
⊢ ( Ord suc 𝑖 → ( 𝑏 ∈ suc 𝑖 ↔ suc 𝑏 ∈ suc suc 𝑖 ) ) |
128 |
111 127
|
syl |
⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑏 ∈ suc 𝑖 ↔ suc 𝑏 ∈ suc suc 𝑖 ) ) |
129 |
128
|
biimpa |
⊢ ( ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑏 ∈ suc 𝑖 ) → suc 𝑏 ∈ suc suc 𝑖 ) |
130 |
129
|
fvresd |
⊢ ( ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑏 ∈ suc 𝑖 ) → ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ suc 𝑏 ) = ( 𝑓 ‘ suc 𝑏 ) ) |
131 |
125 126 130
|
3brtr4d |
⊢ ( ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑏 ∈ suc 𝑖 ) → ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ 𝑏 ) 𝑅 ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ suc 𝑏 ) ) |
132 |
131
|
ralrimiva |
⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ∀ 𝑏 ∈ suc 𝑖 ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ 𝑏 ) 𝑅 ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ suc 𝑏 ) ) |
133 |
|
vex |
⊢ 𝑓 ∈ V |
134 |
133
|
resex |
⊢ ( 𝑓 ↾ suc suc 𝑖 ) ∈ V |
135 |
|
fneq1 |
⊢ ( 𝑔 = ( 𝑓 ↾ suc suc 𝑖 ) → ( 𝑔 Fn suc suc 𝑖 ↔ ( 𝑓 ↾ suc suc 𝑖 ) Fn suc suc 𝑖 ) ) |
136 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑓 ↾ suc suc 𝑖 ) → ( 𝑔 ‘ ∅ ) = ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ ∅ ) ) |
137 |
136
|
eqeq1d |
⊢ ( 𝑔 = ( 𝑓 ↾ suc suc 𝑖 ) → ( ( 𝑔 ‘ ∅ ) = 𝑥 ↔ ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ ∅ ) = 𝑥 ) ) |
138 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑓 ↾ suc suc 𝑖 ) → ( 𝑔 ‘ suc 𝑖 ) = ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ suc 𝑖 ) ) |
139 |
138
|
eqeq1d |
⊢ ( 𝑔 = ( 𝑓 ↾ suc suc 𝑖 ) → ( ( 𝑔 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ↔ ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ) |
140 |
137 139
|
anbi12d |
⊢ ( 𝑔 = ( 𝑓 ↾ suc suc 𝑖 ) → ( ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ↔ ( ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ ∅ ) = 𝑥 ∧ ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ) ) |
141 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑓 ↾ suc suc 𝑖 ) → ( 𝑔 ‘ 𝑏 ) = ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ 𝑏 ) ) |
142 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑓 ↾ suc suc 𝑖 ) → ( 𝑔 ‘ suc 𝑏 ) = ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ suc 𝑏 ) ) |
143 |
141 142
|
breq12d |
⊢ ( 𝑔 = ( 𝑓 ↾ suc suc 𝑖 ) → ( ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ↔ ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ 𝑏 ) 𝑅 ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ suc 𝑏 ) ) ) |
144 |
143
|
ralbidv |
⊢ ( 𝑔 = ( 𝑓 ↾ suc suc 𝑖 ) → ( ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ↔ ∀ 𝑏 ∈ suc 𝑖 ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ 𝑏 ) 𝑅 ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ suc 𝑏 ) ) ) |
145 |
135 140 144
|
3anbi123d |
⊢ ( 𝑔 = ( 𝑓 ↾ suc suc 𝑖 ) → ( ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ↔ ( ( 𝑓 ↾ suc suc 𝑖 ) Fn suc suc 𝑖 ∧ ( ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ ∅ ) = 𝑥 ∧ ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ 𝑏 ) 𝑅 ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ suc 𝑏 ) ) ) ) |
146 |
134 145
|
spcev |
⊢ ( ( ( 𝑓 ↾ suc suc 𝑖 ) Fn suc suc 𝑖 ∧ ( ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ ∅ ) = 𝑥 ∧ ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ 𝑏 ) 𝑅 ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ suc 𝑏 ) ) → ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) |
147 |
107 116 121 132 146
|
syl121anc |
⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) |
148 |
|
simplrl |
⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → 𝑅 ⊆ 𝑆 ) |
149 |
|
simpr3 |
⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) |
150 |
|
ssbr |
⊢ ( 𝑅 ⊆ 𝑆 → ( ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) → ( 𝑓 ‘ 𝑎 ) 𝑆 ( 𝑓 ‘ suc 𝑎 ) ) ) |
151 |
150
|
ralimdv |
⊢ ( 𝑅 ⊆ 𝑆 → ( ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) → ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑆 ( 𝑓 ‘ suc 𝑎 ) ) ) |
152 |
148 149 151
|
sylc |
⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑆 ( 𝑓 ‘ suc 𝑎 ) ) |
153 |
|
fveq2 |
⊢ ( 𝑎 = suc 𝑖 → ( 𝑓 ‘ 𝑎 ) = ( 𝑓 ‘ suc 𝑖 ) ) |
154 |
|
suceq |
⊢ ( 𝑎 = suc 𝑖 → suc 𝑎 = suc suc 𝑖 ) |
155 |
154
|
fveq2d |
⊢ ( 𝑎 = suc 𝑖 → ( 𝑓 ‘ suc 𝑎 ) = ( 𝑓 ‘ suc suc 𝑖 ) ) |
156 |
153 155
|
breq12d |
⊢ ( 𝑎 = suc 𝑖 → ( ( 𝑓 ‘ 𝑎 ) 𝑆 ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ suc 𝑖 ) 𝑆 ( 𝑓 ‘ suc suc 𝑖 ) ) ) |
157 |
156
|
rspcv |
⊢ ( suc 𝑖 ∈ suc suc 𝑖 → ( ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑆 ( 𝑓 ‘ suc 𝑎 ) → ( 𝑓 ‘ suc 𝑖 ) 𝑆 ( 𝑓 ‘ suc suc 𝑖 ) ) ) |
158 |
119 152 157
|
mpsyl |
⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ suc 𝑖 ) 𝑆 ( 𝑓 ‘ suc suc 𝑖 ) ) |
159 |
|
simpr2r |
⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) |
160 |
158 159
|
breqtrd |
⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ suc 𝑖 ) 𝑆 𝑦 ) |
161 |
|
breq1 |
⊢ ( 𝑧 = ( 𝑓 ‘ suc 𝑖 ) → ( 𝑧 𝑆 𝑦 ↔ ( 𝑓 ‘ suc 𝑖 ) 𝑆 𝑦 ) ) |
162 |
101 161
|
anbi12d |
⊢ ( 𝑧 = ( 𝑓 ‘ suc 𝑖 ) → ( ( 𝑥 𝑆 𝑧 ∧ 𝑧 𝑆 𝑦 ) ↔ ( 𝑥 𝑆 ( 𝑓 ‘ suc 𝑖 ) ∧ ( 𝑓 ‘ suc 𝑖 ) 𝑆 𝑦 ) ) ) |
163 |
96 162
|
spcev |
⊢ ( ( 𝑥 𝑆 ( 𝑓 ‘ suc 𝑖 ) ∧ ( 𝑓 ‘ suc 𝑖 ) 𝑆 𝑦 ) → ∃ 𝑧 ( 𝑥 𝑆 𝑧 ∧ 𝑧 𝑆 𝑦 ) ) |
164 |
|
vex |
⊢ 𝑥 ∈ V |
165 |
|
vex |
⊢ 𝑦 ∈ V |
166 |
164 165
|
brco |
⊢ ( 𝑥 ( 𝑆 ∘ 𝑆 ) 𝑦 ↔ ∃ 𝑧 ( 𝑥 𝑆 𝑧 ∧ 𝑧 𝑆 𝑦 ) ) |
167 |
163 166
|
sylibr |
⊢ ( ( 𝑥 𝑆 ( 𝑓 ‘ suc 𝑖 ) ∧ ( 𝑓 ‘ suc 𝑖 ) 𝑆 𝑦 ) → 𝑥 ( 𝑆 ∘ 𝑆 ) 𝑦 ) |
168 |
|
simplrr |
⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) |
169 |
168
|
ssbrd |
⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑥 ( 𝑆 ∘ 𝑆 ) 𝑦 → 𝑥 𝑆 𝑦 ) ) |
170 |
167 169
|
syl5 |
⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( ( 𝑥 𝑆 ( 𝑓 ‘ suc 𝑖 ) ∧ ( 𝑓 ‘ suc 𝑖 ) 𝑆 𝑦 ) → 𝑥 𝑆 𝑦 ) ) |
171 |
160 170
|
mpan2d |
⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑥 𝑆 ( 𝑓 ‘ suc 𝑖 ) → 𝑥 𝑆 𝑦 ) ) |
172 |
147 171
|
embantd |
⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 ( 𝑓 ‘ suc 𝑖 ) ) → 𝑥 𝑆 𝑦 ) ) |
173 |
172
|
ex |
⊢ ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) → ( ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 ( 𝑓 ‘ suc 𝑖 ) ) → 𝑥 𝑆 𝑦 ) ) ) |
174 |
173
|
com23 |
⊢ ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) → ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 ( 𝑓 ‘ suc 𝑖 ) ) → ( ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ) |
175 |
103 174
|
syl5 |
⊢ ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) → ( ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑧 ) → ( ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ) |
176 |
175
|
3impia |
⊢ ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ∧ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑧 ) ) → ( ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) |
177 |
176
|
exlimdv |
⊢ ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ∧ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑧 ) ) → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) |
178 |
177
|
alrimiv |
⊢ ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ∧ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑧 ) ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) |
179 |
178
|
3exp |
⊢ ( 𝑖 ∈ ω → ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ( ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑧 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ) ) |
180 |
179
|
a2d |
⊢ ( 𝑖 ∈ ω → ( ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑧 ) ) → ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ) ) |
181 |
24 63 75 87 95 180
|
finds |
⊢ ( 𝑛 ∈ ω → ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ) |
182 |
181
|
com12 |
⊢ ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ( 𝑛 ∈ ω → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ) |
183 |
182
|
ralrimiv |
⊢ ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑛 ∈ ω ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) |
184 |
|
ralcom4 |
⊢ ( ∀ 𝑛 ∈ ω ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ↔ ∀ 𝑦 ∀ 𝑛 ∈ ω ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) |
185 |
|
r19.23v |
⊢ ( ∀ 𝑛 ∈ ω ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ↔ ( ∃ 𝑛 ∈ ω ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) |
186 |
185
|
albii |
⊢ ( ∀ 𝑦 ∀ 𝑛 ∈ ω ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ↔ ∀ 𝑦 ( ∃ 𝑛 ∈ ω ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) |
187 |
184 186
|
bitri |
⊢ ( ∀ 𝑛 ∈ ω ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ↔ ∀ 𝑦 ( ∃ 𝑛 ∈ ω ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) |
188 |
183 187
|
sylib |
⊢ ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑦 ( ∃ 𝑛 ∈ ω ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) |
189 |
|
brttrcl2 |
⊢ ( 𝑥 t++ 𝑅 𝑦 ↔ ∃ 𝑛 ∈ ω ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
190 |
|
df-br |
⊢ ( 𝑥 t++ 𝑅 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ t++ 𝑅 ) |
191 |
189 190
|
bitr3i |
⊢ ( ∃ 𝑛 ∈ ω ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ 〈 𝑥 , 𝑦 〉 ∈ t++ 𝑅 ) |
192 |
|
df-br |
⊢ ( 𝑥 𝑆 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ) |
193 |
191 192
|
imbi12i |
⊢ ( ( ∃ 𝑛 ∈ ω ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ t++ 𝑅 → 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ) ) |
194 |
193
|
albii |
⊢ ( ∀ 𝑦 ( ∃ 𝑛 ∈ ω ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ↔ ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ t++ 𝑅 → 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ) ) |
195 |
188 194
|
sylib |
⊢ ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ t++ 𝑅 → 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ) ) |
196 |
195
|
alrimiv |
⊢ ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ t++ 𝑅 → 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ) ) |
197 |
|
relttrcl |
⊢ Rel t++ 𝑅 |
198 |
|
ssrel |
⊢ ( Rel t++ 𝑅 → ( t++ 𝑅 ⊆ 𝑆 ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ t++ 𝑅 → 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ) ) ) |
199 |
197 198
|
ax-mp |
⊢ ( t++ 𝑅 ⊆ 𝑆 ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ t++ 𝑅 → 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ) ) |
200 |
196 199
|
sylibr |
⊢ ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → t++ 𝑅 ⊆ 𝑆 ) |