Step |
Hyp |
Ref |
Expression |
1 |
|
suceq |
|- ( m = (/) -> suc m = suc (/) ) |
2 |
|
suceq |
|- ( suc m = suc (/) -> suc suc m = suc suc (/) ) |
3 |
1 2
|
syl |
|- ( m = (/) -> suc suc m = suc suc (/) ) |
4 |
3
|
fneq2d |
|- ( m = (/) -> ( f Fn suc suc m <-> f Fn suc suc (/) ) ) |
5 |
|
df-1o |
|- 1o = suc (/) |
6 |
1 5
|
eqtr4di |
|- ( m = (/) -> suc m = 1o ) |
7 |
6
|
fveqeq2d |
|- ( m = (/) -> ( ( f ` suc m ) = y <-> ( f ` 1o ) = y ) ) |
8 |
7
|
anbi2d |
|- ( m = (/) -> ( ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) <-> ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) ) ) |
9 |
|
df1o2 |
|- 1o = { (/) } |
10 |
6 9
|
eqtrdi |
|- ( m = (/) -> suc m = { (/) } ) |
11 |
10
|
raleqdv |
|- ( m = (/) -> ( A. a e. suc m ( f ` a ) R ( f ` suc a ) <-> A. a e. { (/) } ( f ` a ) R ( f ` suc a ) ) ) |
12 |
|
0ex |
|- (/) e. _V |
13 |
|
fveq2 |
|- ( a = (/) -> ( f ` a ) = ( f ` (/) ) ) |
14 |
|
suceq |
|- ( a = (/) -> suc a = suc (/) ) |
15 |
14 5
|
eqtr4di |
|- ( a = (/) -> suc a = 1o ) |
16 |
15
|
fveq2d |
|- ( a = (/) -> ( f ` suc a ) = ( f ` 1o ) ) |
17 |
13 16
|
breq12d |
|- ( a = (/) -> ( ( f ` a ) R ( f ` suc a ) <-> ( f ` (/) ) R ( f ` 1o ) ) ) |
18 |
12 17
|
ralsn |
|- ( A. a e. { (/) } ( f ` a ) R ( f ` suc a ) <-> ( f ` (/) ) R ( f ` 1o ) ) |
19 |
11 18
|
bitrdi |
|- ( m = (/) -> ( A. a e. suc m ( f ` a ) R ( f ` suc a ) <-> ( f ` (/) ) R ( f ` 1o ) ) ) |
20 |
4 8 19
|
3anbi123d |
|- ( m = (/) -> ( ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) <-> ( f Fn suc suc (/) /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) ) ) |
21 |
20
|
exbidv |
|- ( m = (/) -> ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) <-> E. f ( f Fn suc suc (/) /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) ) ) |
22 |
21
|
imbi1d |
|- ( m = (/) -> ( ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> ( E. f ( f Fn suc suc (/) /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) -> x S y ) ) ) |
23 |
22
|
albidv |
|- ( m = (/) -> ( A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. y ( E. f ( f Fn suc suc (/) /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) -> x S y ) ) ) |
24 |
23
|
imbi2d |
|- ( m = (/) -> ( ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) <-> ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. f ( f Fn suc suc (/) /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) -> x S y ) ) ) ) |
25 |
|
suceq |
|- ( m = i -> suc m = suc i ) |
26 |
|
suceq |
|- ( suc m = suc i -> suc suc m = suc suc i ) |
27 |
25 26
|
syl |
|- ( m = i -> suc suc m = suc suc i ) |
28 |
27
|
fneq2d |
|- ( m = i -> ( f Fn suc suc m <-> f Fn suc suc i ) ) |
29 |
25
|
fveqeq2d |
|- ( m = i -> ( ( f ` suc m ) = y <-> ( f ` suc i ) = y ) ) |
30 |
29
|
anbi2d |
|- ( m = i -> ( ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) <-> ( ( f ` (/) ) = x /\ ( f ` suc i ) = y ) ) ) |
31 |
25
|
raleqdv |
|- ( m = i -> ( A. a e. suc m ( f ` a ) R ( f ` suc a ) <-> A. a e. suc i ( f ` a ) R ( f ` suc a ) ) ) |
32 |
|
fveq2 |
|- ( a = b -> ( f ` a ) = ( f ` b ) ) |
33 |
|
suceq |
|- ( a = b -> suc a = suc b ) |
34 |
33
|
fveq2d |
|- ( a = b -> ( f ` suc a ) = ( f ` suc b ) ) |
35 |
32 34
|
breq12d |
|- ( a = b -> ( ( f ` a ) R ( f ` suc a ) <-> ( f ` b ) R ( f ` suc b ) ) ) |
36 |
35
|
cbvralvw |
|- ( A. a e. suc i ( f ` a ) R ( f ` suc a ) <-> A. b e. suc i ( f ` b ) R ( f ` suc b ) ) |
37 |
31 36
|
bitrdi |
|- ( m = i -> ( A. a e. suc m ( f ` a ) R ( f ` suc a ) <-> A. b e. suc i ( f ` b ) R ( f ` suc b ) ) ) |
38 |
28 30 37
|
3anbi123d |
|- ( m = i -> ( ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) <-> ( f Fn suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc i ) = y ) /\ A. b e. suc i ( f ` b ) R ( f ` suc b ) ) ) ) |
39 |
38
|
exbidv |
|- ( m = i -> ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) <-> E. f ( f Fn suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc i ) = y ) /\ A. b e. suc i ( f ` b ) R ( f ` suc b ) ) ) ) |
40 |
|
fneq1 |
|- ( f = g -> ( f Fn suc suc i <-> g Fn suc suc i ) ) |
41 |
|
fveq1 |
|- ( f = g -> ( f ` (/) ) = ( g ` (/) ) ) |
42 |
41
|
eqeq1d |
|- ( f = g -> ( ( f ` (/) ) = x <-> ( g ` (/) ) = x ) ) |
43 |
|
fveq1 |
|- ( f = g -> ( f ` suc i ) = ( g ` suc i ) ) |
44 |
43
|
eqeq1d |
|- ( f = g -> ( ( f ` suc i ) = y <-> ( g ` suc i ) = y ) ) |
45 |
42 44
|
anbi12d |
|- ( f = g -> ( ( ( f ` (/) ) = x /\ ( f ` suc i ) = y ) <-> ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) ) ) |
46 |
|
fveq1 |
|- ( f = g -> ( f ` b ) = ( g ` b ) ) |
47 |
|
fveq1 |
|- ( f = g -> ( f ` suc b ) = ( g ` suc b ) ) |
48 |
46 47
|
breq12d |
|- ( f = g -> ( ( f ` b ) R ( f ` suc b ) <-> ( g ` b ) R ( g ` suc b ) ) ) |
49 |
48
|
ralbidv |
|- ( f = g -> ( A. b e. suc i ( f ` b ) R ( f ` suc b ) <-> A. b e. suc i ( g ` b ) R ( g ` suc b ) ) ) |
50 |
40 45 49
|
3anbi123d |
|- ( f = g -> ( ( f Fn suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc i ) = y ) /\ A. b e. suc i ( f ` b ) R ( f ` suc b ) ) <-> ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) ) ) |
51 |
50
|
cbvexvw |
|- ( E. f ( f Fn suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc i ) = y ) /\ A. b e. suc i ( f ` b ) R ( f ` suc b ) ) <-> E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) ) |
52 |
39 51
|
bitrdi |
|- ( m = i -> ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) <-> E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) ) ) |
53 |
52
|
imbi1d |
|- ( m = i -> ( ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S y ) ) ) |
54 |
53
|
albidv |
|- ( m = i -> ( A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. y ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S y ) ) ) |
55 |
|
eqeq2 |
|- ( y = z -> ( ( g ` suc i ) = y <-> ( g ` suc i ) = z ) ) |
56 |
55
|
anbi2d |
|- ( y = z -> ( ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) <-> ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) ) ) |
57 |
56
|
3anbi2d |
|- ( y = z -> ( ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) <-> ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) ) ) |
58 |
57
|
exbidv |
|- ( y = z -> ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) <-> E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) ) ) |
59 |
|
breq2 |
|- ( y = z -> ( x S y <-> x S z ) ) |
60 |
58 59
|
imbi12d |
|- ( y = z -> ( ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S y ) <-> ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) ) ) |
61 |
60
|
cbvalvw |
|- ( A. y ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S y ) <-> A. z ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) ) |
62 |
54 61
|
bitrdi |
|- ( m = i -> ( A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. z ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) ) ) |
63 |
62
|
imbi2d |
|- ( m = i -> ( ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) <-> ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. z ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) ) ) ) |
64 |
|
suceq |
|- ( m = suc i -> suc m = suc suc i ) |
65 |
|
suceq |
|- ( suc m = suc suc i -> suc suc m = suc suc suc i ) |
66 |
64 65
|
syl |
|- ( m = suc i -> suc suc m = suc suc suc i ) |
67 |
66
|
fneq2d |
|- ( m = suc i -> ( f Fn suc suc m <-> f Fn suc suc suc i ) ) |
68 |
64
|
fveqeq2d |
|- ( m = suc i -> ( ( f ` suc m ) = y <-> ( f ` suc suc i ) = y ) ) |
69 |
68
|
anbi2d |
|- ( m = suc i -> ( ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) <-> ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) ) ) |
70 |
64
|
raleqdv |
|- ( m = suc i -> ( A. a e. suc m ( f ` a ) R ( f ` suc a ) <-> A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) |
71 |
67 69 70
|
3anbi123d |
|- ( m = suc i -> ( ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) <-> ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) ) |
72 |
71
|
exbidv |
|- ( m = suc i -> ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) <-> E. f ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) ) |
73 |
72
|
imbi1d |
|- ( m = suc i -> ( ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> ( E. f ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) |
74 |
73
|
albidv |
|- ( m = suc i -> ( A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. y ( E. f ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) |
75 |
74
|
imbi2d |
|- ( m = suc i -> ( ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) <-> ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. f ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) ) |
76 |
|
suceq |
|- ( m = n -> suc m = suc n ) |
77 |
|
suceq |
|- ( suc m = suc n -> suc suc m = suc suc n ) |
78 |
76 77
|
syl |
|- ( m = n -> suc suc m = suc suc n ) |
79 |
78
|
fneq2d |
|- ( m = n -> ( f Fn suc suc m <-> f Fn suc suc n ) ) |
80 |
76
|
fveqeq2d |
|- ( m = n -> ( ( f ` suc m ) = y <-> ( f ` suc n ) = y ) ) |
81 |
80
|
anbi2d |
|- ( m = n -> ( ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) <-> ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) ) ) |
82 |
76
|
raleqdv |
|- ( m = n -> ( A. a e. suc m ( f ` a ) R ( f ` suc a ) <-> A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) |
83 |
79 81 82
|
3anbi123d |
|- ( m = n -> ( ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) <-> ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) ) |
84 |
83
|
exbidv |
|- ( m = n -> ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) <-> E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) ) |
85 |
84
|
imbi1d |
|- ( m = n -> ( ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) |
86 |
85
|
albidv |
|- ( m = n -> ( A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. y ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) |
87 |
86
|
imbi2d |
|- ( m = n -> ( ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) <-> ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) ) |
88 |
|
breq12 |
|- ( ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) -> ( ( f ` (/) ) R ( f ` 1o ) <-> x R y ) ) |
89 |
88
|
biimpa |
|- ( ( ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) -> x R y ) |
90 |
89
|
3adant1 |
|- ( ( f Fn suc suc (/) /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) -> x R y ) |
91 |
|
ssbr |
|- ( R C_ S -> ( x R y -> x S y ) ) |
92 |
91
|
adantr |
|- ( ( R C_ S /\ ( S o. S ) C_ S ) -> ( x R y -> x S y ) ) |
93 |
90 92
|
syl5 |
|- ( ( R C_ S /\ ( S o. S ) C_ S ) -> ( ( f Fn suc suc (/) /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) -> x S y ) ) |
94 |
93
|
exlimdv |
|- ( ( R C_ S /\ ( S o. S ) C_ S ) -> ( E. f ( f Fn suc suc (/) /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) -> x S y ) ) |
95 |
94
|
alrimiv |
|- ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. f ( f Fn suc suc (/) /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) -> x S y ) ) |
96 |
|
fvex |
|- ( f ` suc i ) e. _V |
97 |
|
eqeq2 |
|- ( z = ( f ` suc i ) -> ( ( g ` suc i ) = z <-> ( g ` suc i ) = ( f ` suc i ) ) ) |
98 |
97
|
anbi2d |
|- ( z = ( f ` suc i ) -> ( ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) <-> ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) ) ) |
99 |
98
|
3anbi2d |
|- ( z = ( f ` suc i ) -> ( ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) <-> ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) ) ) |
100 |
99
|
exbidv |
|- ( z = ( f ` suc i ) -> ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) <-> E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) ) ) |
101 |
|
breq2 |
|- ( z = ( f ` suc i ) -> ( x S z <-> x S ( f ` suc i ) ) ) |
102 |
100 101
|
imbi12d |
|- ( z = ( f ` suc i ) -> ( ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) <-> ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S ( f ` suc i ) ) ) ) |
103 |
96 102
|
spcv |
|- ( A. z ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) -> ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S ( f ` suc i ) ) ) |
104 |
|
simpr1 |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> f Fn suc suc suc i ) |
105 |
|
sssucid |
|- suc suc i C_ suc suc suc i |
106 |
|
fnssres |
|- ( ( f Fn suc suc suc i /\ suc suc i C_ suc suc suc i ) -> ( f |` suc suc i ) Fn suc suc i ) |
107 |
104 105 106
|
sylancl |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( f |` suc suc i ) Fn suc suc i ) |
108 |
|
peano2 |
|- ( i e. _om -> suc i e. _om ) |
109 |
108
|
ad2antrr |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> suc i e. _om ) |
110 |
|
nnord |
|- ( suc i e. _om -> Ord suc i ) |
111 |
109 110
|
syl |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> Ord suc i ) |
112 |
|
0elsuc |
|- ( Ord suc i -> (/) e. suc suc i ) |
113 |
111 112
|
syl |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> (/) e. suc suc i ) |
114 |
113
|
fvresd |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( ( f |` suc suc i ) ` (/) ) = ( f ` (/) ) ) |
115 |
|
simpr2l |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( f ` (/) ) = x ) |
116 |
114 115
|
eqtrd |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( ( f |` suc suc i ) ` (/) ) = x ) |
117 |
|
vex |
|- i e. _V |
118 |
117
|
sucex |
|- suc i e. _V |
119 |
118
|
sucid |
|- suc i e. suc suc i |
120 |
|
fvres |
|- ( suc i e. suc suc i -> ( ( f |` suc suc i ) ` suc i ) = ( f ` suc i ) ) |
121 |
119 120
|
mp1i |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( ( f |` suc suc i ) ` suc i ) = ( f ` suc i ) ) |
122 |
|
simplr3 |
|- ( ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) /\ b e. suc i ) -> A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) |
123 |
|
elelsuc |
|- ( b e. suc i -> b e. suc suc i ) |
124 |
123
|
adantl |
|- ( ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) /\ b e. suc i ) -> b e. suc suc i ) |
125 |
35 122 124
|
rspcdva |
|- ( ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) /\ b e. suc i ) -> ( f ` b ) R ( f ` suc b ) ) |
126 |
124
|
fvresd |
|- ( ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) /\ b e. suc i ) -> ( ( f |` suc suc i ) ` b ) = ( f ` b ) ) |
127 |
|
ordsucelsuc |
|- ( Ord suc i -> ( b e. suc i <-> suc b e. suc suc i ) ) |
128 |
111 127
|
syl |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( b e. suc i <-> suc b e. suc suc i ) ) |
129 |
128
|
biimpa |
|- ( ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) /\ b e. suc i ) -> suc b e. suc suc i ) |
130 |
129
|
fvresd |
|- ( ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) /\ b e. suc i ) -> ( ( f |` suc suc i ) ` suc b ) = ( f ` suc b ) ) |
131 |
125 126 130
|
3brtr4d |
|- ( ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) /\ b e. suc i ) -> ( ( f |` suc suc i ) ` b ) R ( ( f |` suc suc i ) ` suc b ) ) |
132 |
131
|
ralrimiva |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> A. b e. suc i ( ( f |` suc suc i ) ` b ) R ( ( f |` suc suc i ) ` suc b ) ) |
133 |
|
vex |
|- f e. _V |
134 |
133
|
resex |
|- ( f |` suc suc i ) e. _V |
135 |
|
fneq1 |
|- ( g = ( f |` suc suc i ) -> ( g Fn suc suc i <-> ( f |` suc suc i ) Fn suc suc i ) ) |
136 |
|
fveq1 |
|- ( g = ( f |` suc suc i ) -> ( g ` (/) ) = ( ( f |` suc suc i ) ` (/) ) ) |
137 |
136
|
eqeq1d |
|- ( g = ( f |` suc suc i ) -> ( ( g ` (/) ) = x <-> ( ( f |` suc suc i ) ` (/) ) = x ) ) |
138 |
|
fveq1 |
|- ( g = ( f |` suc suc i ) -> ( g ` suc i ) = ( ( f |` suc suc i ) ` suc i ) ) |
139 |
138
|
eqeq1d |
|- ( g = ( f |` suc suc i ) -> ( ( g ` suc i ) = ( f ` suc i ) <-> ( ( f |` suc suc i ) ` suc i ) = ( f ` suc i ) ) ) |
140 |
137 139
|
anbi12d |
|- ( g = ( f |` suc suc i ) -> ( ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) <-> ( ( ( f |` suc suc i ) ` (/) ) = x /\ ( ( f |` suc suc i ) ` suc i ) = ( f ` suc i ) ) ) ) |
141 |
|
fveq1 |
|- ( g = ( f |` suc suc i ) -> ( g ` b ) = ( ( f |` suc suc i ) ` b ) ) |
142 |
|
fveq1 |
|- ( g = ( f |` suc suc i ) -> ( g ` suc b ) = ( ( f |` suc suc i ) ` suc b ) ) |
143 |
141 142
|
breq12d |
|- ( g = ( f |` suc suc i ) -> ( ( g ` b ) R ( g ` suc b ) <-> ( ( f |` suc suc i ) ` b ) R ( ( f |` suc suc i ) ` suc b ) ) ) |
144 |
143
|
ralbidv |
|- ( g = ( f |` suc suc i ) -> ( A. b e. suc i ( g ` b ) R ( g ` suc b ) <-> A. b e. suc i ( ( f |` suc suc i ) ` b ) R ( ( f |` suc suc i ) ` suc b ) ) ) |
145 |
135 140 144
|
3anbi123d |
|- ( g = ( f |` suc suc i ) -> ( ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) <-> ( ( f |` suc suc i ) Fn suc suc i /\ ( ( ( f |` suc suc i ) ` (/) ) = x /\ ( ( f |` suc suc i ) ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( ( f |` suc suc i ) ` b ) R ( ( f |` suc suc i ) ` suc b ) ) ) ) |
146 |
134 145
|
spcev |
|- ( ( ( f |` suc suc i ) Fn suc suc i /\ ( ( ( f |` suc suc i ) ` (/) ) = x /\ ( ( f |` suc suc i ) ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( ( f |` suc suc i ) ` b ) R ( ( f |` suc suc i ) ` suc b ) ) -> E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) ) |
147 |
107 116 121 132 146
|
syl121anc |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) ) |
148 |
|
simplrl |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> R C_ S ) |
149 |
|
simpr3 |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) |
150 |
|
ssbr |
|- ( R C_ S -> ( ( f ` a ) R ( f ` suc a ) -> ( f ` a ) S ( f ` suc a ) ) ) |
151 |
150
|
ralimdv |
|- ( R C_ S -> ( A. a e. suc suc i ( f ` a ) R ( f ` suc a ) -> A. a e. suc suc i ( f ` a ) S ( f ` suc a ) ) ) |
152 |
148 149 151
|
sylc |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> A. a e. suc suc i ( f ` a ) S ( f ` suc a ) ) |
153 |
|
fveq2 |
|- ( a = suc i -> ( f ` a ) = ( f ` suc i ) ) |
154 |
|
suceq |
|- ( a = suc i -> suc a = suc suc i ) |
155 |
154
|
fveq2d |
|- ( a = suc i -> ( f ` suc a ) = ( f ` suc suc i ) ) |
156 |
153 155
|
breq12d |
|- ( a = suc i -> ( ( f ` a ) S ( f ` suc a ) <-> ( f ` suc i ) S ( f ` suc suc i ) ) ) |
157 |
156
|
rspcv |
|- ( suc i e. suc suc i -> ( A. a e. suc suc i ( f ` a ) S ( f ` suc a ) -> ( f ` suc i ) S ( f ` suc suc i ) ) ) |
158 |
119 152 157
|
mpsyl |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( f ` suc i ) S ( f ` suc suc i ) ) |
159 |
|
simpr2r |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( f ` suc suc i ) = y ) |
160 |
158 159
|
breqtrd |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( f ` suc i ) S y ) |
161 |
|
breq1 |
|- ( z = ( f ` suc i ) -> ( z S y <-> ( f ` suc i ) S y ) ) |
162 |
101 161
|
anbi12d |
|- ( z = ( f ` suc i ) -> ( ( x S z /\ z S y ) <-> ( x S ( f ` suc i ) /\ ( f ` suc i ) S y ) ) ) |
163 |
96 162
|
spcev |
|- ( ( x S ( f ` suc i ) /\ ( f ` suc i ) S y ) -> E. z ( x S z /\ z S y ) ) |
164 |
|
vex |
|- x e. _V |
165 |
|
vex |
|- y e. _V |
166 |
164 165
|
brco |
|- ( x ( S o. S ) y <-> E. z ( x S z /\ z S y ) ) |
167 |
163 166
|
sylibr |
|- ( ( x S ( f ` suc i ) /\ ( f ` suc i ) S y ) -> x ( S o. S ) y ) |
168 |
|
simplrr |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( S o. S ) C_ S ) |
169 |
168
|
ssbrd |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( x ( S o. S ) y -> x S y ) ) |
170 |
167 169
|
syl5 |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( ( x S ( f ` suc i ) /\ ( f ` suc i ) S y ) -> x S y ) ) |
171 |
160 170
|
mpan2d |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( x S ( f ` suc i ) -> x S y ) ) |
172 |
147 171
|
embantd |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S ( f ` suc i ) ) -> x S y ) ) |
173 |
172
|
ex |
|- ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) -> ( ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> ( ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S ( f ` suc i ) ) -> x S y ) ) ) |
174 |
173
|
com23 |
|- ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) -> ( ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S ( f ` suc i ) ) -> ( ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) |
175 |
103 174
|
syl5 |
|- ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) -> ( A. z ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) -> ( ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) |
176 |
175
|
3impia |
|- ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) /\ A. z ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) ) -> ( ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) |
177 |
176
|
exlimdv |
|- ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) /\ A. z ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) ) -> ( E. f ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) |
178 |
177
|
alrimiv |
|- ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) /\ A. z ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) ) -> A. y ( E. f ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) |
179 |
178
|
3exp |
|- ( i e. _om -> ( ( R C_ S /\ ( S o. S ) C_ S ) -> ( A. z ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) -> A. y ( E. f ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) ) |
180 |
179
|
a2d |
|- ( i e. _om -> ( ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. z ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) ) -> ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. f ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) ) |
181 |
24 63 75 87 95 180
|
finds |
|- ( n e. _om -> ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) |
182 |
181
|
com12 |
|- ( ( R C_ S /\ ( S o. S ) C_ S ) -> ( n e. _om -> A. y ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) |
183 |
182
|
ralrimiv |
|- ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. n e. _om A. y ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) |
184 |
|
ralcom4 |
|- ( A. n e. _om A. y ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. y A. n e. _om ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) |
185 |
|
r19.23v |
|- ( A. n e. _om ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) |
186 |
185
|
albii |
|- ( A. y A. n e. _om ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. y ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) |
187 |
184 186
|
bitri |
|- ( A. n e. _om A. y ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. y ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) |
188 |
183 187
|
sylib |
|- ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) |
189 |
|
brttrcl2 |
|- ( x t++ R y <-> E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) |
190 |
|
df-br |
|- ( x t++ R y <-> <. x , y >. e. t++ R ) |
191 |
189 190
|
bitr3i |
|- ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) <-> <. x , y >. e. t++ R ) |
192 |
|
df-br |
|- ( x S y <-> <. x , y >. e. S ) |
193 |
191 192
|
imbi12i |
|- ( ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) |
194 |
193
|
albii |
|- ( A. y ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) |
195 |
188 194
|
sylib |
|- ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) |
196 |
195
|
alrimiv |
|- ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. x A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) |
197 |
|
relttrcl |
|- Rel t++ R |
198 |
|
ssrel |
|- ( Rel t++ R -> ( t++ R C_ S <-> A. x A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) ) |
199 |
197 198
|
ax-mp |
|- ( t++ R C_ S <-> A. x A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) |
200 |
196 199
|
sylibr |
|- ( ( R C_ S /\ ( S o. S ) C_ S ) -> t++ R C_ S ) |