Step |
Hyp |
Ref |
Expression |
1 |
|
brttrcl |
|- ( A t++ R B <-> E. m e. ( _om \ 1o ) E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) |
2 |
|
df-1o |
|- 1o = suc (/) |
3 |
2
|
difeq2i |
|- ( _om \ 1o ) = ( _om \ suc (/) ) |
4 |
3
|
eleq2i |
|- ( m e. ( _om \ 1o ) <-> m e. ( _om \ suc (/) ) ) |
5 |
|
peano1 |
|- (/) e. _om |
6 |
|
eldifsucnn |
|- ( (/) e. _om -> ( m e. ( _om \ suc (/) ) <-> E. n e. ( _om \ (/) ) m = suc n ) ) |
7 |
5 6
|
ax-mp |
|- ( m e. ( _om \ suc (/) ) <-> E. n e. ( _om \ (/) ) m = suc n ) |
8 |
|
dif0 |
|- ( _om \ (/) ) = _om |
9 |
8
|
rexeqi |
|- ( E. n e. ( _om \ (/) ) m = suc n <-> E. n e. _om m = suc n ) |
10 |
4 7 9
|
3bitri |
|- ( m e. ( _om \ 1o ) <-> E. n e. _om m = suc n ) |
11 |
10
|
anbi1i |
|- ( ( m e. ( _om \ 1o ) /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) <-> ( E. n e. _om m = suc n /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) ) |
12 |
|
r19.41v |
|- ( E. n e. _om ( m = suc n /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) <-> ( E. n e. _om m = suc n /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) ) |
13 |
11 12
|
bitr4i |
|- ( ( m e. ( _om \ 1o ) /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) <-> E. n e. _om ( m = suc n /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) ) |
14 |
13
|
exbii |
|- ( E. m ( m e. ( _om \ 1o ) /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) <-> E. m E. n e. _om ( m = suc n /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) ) |
15 |
|
df-rex |
|- ( E. m e. ( _om \ 1o ) E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) <-> E. m ( m e. ( _om \ 1o ) /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) ) |
16 |
|
rexcom4 |
|- ( E. n e. _om E. m ( m = suc n /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) <-> E. m E. n e. _om ( m = suc n /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) ) |
17 |
14 15 16
|
3bitr4i |
|- ( E. m e. ( _om \ 1o ) E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) <-> E. n e. _om E. m ( m = suc n /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) ) |
18 |
|
vex |
|- n e. _V |
19 |
18
|
sucex |
|- suc n e. _V |
20 |
|
suceq |
|- ( m = suc n -> suc m = suc suc n ) |
21 |
20
|
fneq2d |
|- ( m = suc n -> ( f Fn suc m <-> f Fn suc suc n ) ) |
22 |
|
fveqeq2 |
|- ( m = suc n -> ( ( f ` m ) = B <-> ( f ` suc n ) = B ) ) |
23 |
22
|
anbi2d |
|- ( m = suc n -> ( ( ( f ` (/) ) = A /\ ( f ` m ) = B ) <-> ( ( f ` (/) ) = A /\ ( f ` suc n ) = B ) ) ) |
24 |
|
raleq |
|- ( m = suc n -> ( A. a e. m ( f ` a ) R ( f ` suc a ) <-> A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) |
25 |
21 23 24
|
3anbi123d |
|- ( m = suc n -> ( ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) <-> ( f Fn suc suc n /\ ( ( f ` (/) ) = A /\ ( f ` suc n ) = B ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) ) |
26 |
25
|
exbidv |
|- ( m = suc n -> ( E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) <-> E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = A /\ ( f ` suc n ) = B ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) ) |
27 |
19 26
|
ceqsexv |
|- ( E. m ( m = suc n /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) <-> E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = A /\ ( f ` suc n ) = B ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) |
28 |
27
|
rexbii |
|- ( E. n e. _om E. m ( m = suc n /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) <-> E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = A /\ ( f ` suc n ) = B ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) |
29 |
1 17 28
|
3bitri |
|- ( A t++ R B <-> E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = A /\ ( f ` suc n ) = B ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) |